
Fooling Newton’s Method 
You might think that if the Newton sequence of a function converges to a number, that the 
number must be a zero of the function.  Let’s look at the Newton iteration and see what might 
go wrong: 
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Most textbooks give examples where the Newton sequence gets stuck(oscillates), hits a 
horizontal tangent and fails, or simply converges to a different zero than the one intended, but I 
don’t see textbooks give examples of Newton sequences converging to nonzeros. 
 
Normally the Newton sequence { }nx  converges to a number L and the function and its 
derivative are continuous, so we can let n →∞  in the Newton formula to conclude that  
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Assuming that ( ) 0f L′ ≠ , we conclude that the Newton sequence converges to a zero of f.  
 
If we can get a Newton sequence { }nx  to converge to a number L with the property that 

( ){ }nf x′  diverges to ±∞ , then  L might not be a zero of f. 
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Consider the function 
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a) Find a formula for the Newton sequence, and verify that it converges to a nonzero of f. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b) Find a formula for ( )nf x′  and determine its behavior as n →∞ . 
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A Stirling-like Inequality 
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Let’s use some elementary calculus to derive a weaker inequality: 
 

I. ( ) ( )
1

ln ! ln
n

i

n i
=

=∑  

 
 
 
 
 
 
 
 
 
 
 
 
From the two graphs, you can deduce the 
following double inequality: 
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Integrate the left and right sides, 
exponentiate, and complete the inequality: 
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II. Find the interval of convergence of the power series 
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III. a) If k is a positive integer, find the radius of convergence of the power series ( )
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b) If 1k =  check the endpoints. 

 
 
 
 
 
 

c) If 2k ≥ , use the result of I. to check the endpoints. 
 
 
 
 
 
 
 
 
 
 
 
 
 



Evaluating Proper/Improper Integrals with little or no Integration. 
 

I. For the improper integral 2
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Use the substitution 1u
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III. If you use the substitution 1u
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IV. a) Use the substitution 
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b) Evaluate the definite integral ( )
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VI. Show that if f is continuous then ( ) ( )
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Limit Problems 
I. What happens if you try L’Hopital’s Rule on 2
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VI. Find the following limits: 
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The last expression is a Riemann sum of some definite integral. 
 
 

VIII. The alternating series ( ) 1
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Let’s look at the even partial sums: 
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Solving the previous equation for 2nS , we get 
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Method 2:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
From the pictures you get 
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Assorted Series 
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b) Show that if { }na  is a sequence of positive numbers, then if ( ){ }ln na  is decreasing, then 
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b) You can verity the sum you found in part a) by noticing that 
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The Goat/Cow Grazing in the Grass/Seaweed Problem 
I. Suppose that after a string is wound clockwise around a circle of radius a, its free end is at the 

point ( ),0A a .  Now the string is unwound, always stretched tight so the unwound portion 
TP is tangent to the circle at T .  The set of points traced out by the free end of the string is 
called the involute of the circle. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Find the parametric equations of the involute of the circle. 
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II. Suppose the circle in the previous problem represents the cross-section of a cylindrical water 
tank of radius a, and the string is a rope of length aπ .  The rope is anchored at the point B 
opposite point A.  If the other end of the rope is tied to a cow, let’s examine the region that 
can be grazed by the cow.  Here is a diagram showing the rope in various positions: 

 

 
 

The boundary of the grazing region can be broken down into three pieces:  APQ  is a portion 
of the involute of the circle, QR  is a semicircle, and RSA  is the reflection across the x-axis of 
a portion of the involute. 
 
Find the length of the boundary of the grazing region. 
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III. Find the area of the grazing region. 
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IV. Now suppose that a sea cow(manatee) is tied to a point on the surface of a sphere of radius a 
by a rope of length aπ .  Try to find the surface area and the volume of the grazing region of 
the sea cow. 
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V. Now suppose that the rope in the previous problem has length 2 aπ  and is anchored at the 
point A before being wound completely around the tank. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

APQ is a portion of the involute, QR is a semicircle, and RSA is a reflection of a portion of the 
involute. 
 
 
Attempt all the previous calculations:  Length, area, surface area, and volume. 
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Iteration and More Grazing 
I. Analyze the following recursively defined sequences using a cobweb diagram: 
a) 1 16, 2 3 2n na a a+= = −                                          b) 1 118, 2 3 2n na a a+= = −  
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g) Determine the convergence or divergence of the series 
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II. A farmer has a fenced circular pasture of radius a and wants to tie a cow to the fence with a 
rope of length b so as to allow the cow to graze half the pasture.  How long should the rope 
be to accomplish this? 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The length of the rope, b, must be longer than a and shorter than 2a , i.e. 2a b a< < .  To 
find the area of the grazing region, we can use polar coordinates: 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The grazing area 
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We want this to equal half the pasture area which is 
2

2
aπ , so we get the equation 
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a) Verify the previous equation. 
 
 
 
 
 
 

If we let bx
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= , we get the simplified equation ( )2 1 2 24 2 sin 4
2
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we’re looking for the solution x, with 1 2x< < .  Here’s a plot of the leftside and rightside 
of the equation: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
If we rearrange the equation, we can produce a sequence that will converge to the solution: 
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b) Complete the cobweb diagram for the recursive sequence. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Here are the first 14 terms of the sequence generated by Excel: 
1x 1 

2x 1.10363

3x 1.13795

4x 1.15068

5x 1.15558

6x 1.15749

7x 1.15824

8x 1.15854

9x 1.15865

10x 1.15870

11x 1.15872

12x 1.15872

13x 1.15873

14x 1.15873
 
So the rope length, b, should be approximately 1.15873a . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


