Fooling Newton’s Method

a) Find a formula for the Newton sequence, and verify that it converges to a nonzero of f.
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b) Find a formula for f'(x,) and determine its behavior as n — .
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A Stirling-like Inequality

Integrate the left and right sides, exponentiate, and complete the inequality:
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I1. Find the interval of convergence of the power series E
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So it diverges by comparison.
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At x=—£,we get the alternating series E % From the real Stirling Inequality, we
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But HH lj —e} <0, so a, decreases to zero. The Alternating Series Test implies that the
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I11. a) If k is a positive integer, find the radius of convergence of the power series Z( ) X",
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b) If k =1 check the endpoints.

In this case the series is Zx” , Which diverges for x =+1.
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c) If k>2, use the result of I. to check the endpoints.

At x =k*, we get the series ka”k . but
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From Part 1., so it diverges by comparison. We can actually use the Ratio test to determine
convergence at both endpoints:
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At x = +k*

Evaluating Proper/Improper Integrals with little or no Integration.
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I. For the improper integral j - dx
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Since the improper integral is divergent, we can’t conclude that its value is zero.

IV. a) Use the substitution u:%—x along with the identities sin(%—x):cosx and
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b) Evaluate the definite integral j —dx for n a positive integer.
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VI. Show that if f is continuous then jxf (sinx)dx:%“‘f(sin x)dx by showing that
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So we can conclude that the value of the integral is zero

Limit Problems
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I. What happens if you try L’Hopital’s Rule on lim 1
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Again, IimlJr doesn’t exist, so L’Hopital doesn’t apply, but we can use the double
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I11. Find the value of ¢ so that Iim(ﬂj =9.
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V. Find lim———*2 | "Hopital’s Rule won’t work, so try something else.
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n— n

by observing the following:
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VIII. The alternating series E
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Q converges by the Alternating Series Test, but what
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Find lim L+i+---+i , and you’ll know the sum of the series.
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c) For x>0, show that In(1+x)<x.
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b) You can verity the sum you found in part a) by noticing that
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