@ Formal Definition of a Limit

Formal Definition of a Limit: (Epsilon-Delta)
Let f be a function defined on an open interval containing ¢ (except possibly at ¢ ) and let /.

be a real number. The statement lim f (x) =L means that for each £ > 0 there existsa § >0 such
X—c ‘k

that if 0<|x~c[<&, then |f(x)-L|<e. L ()
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Since tx-cl is the distance from x to ¢ and l f (x)——L‘ is the distance from f(x) to L and since & can be
arbitrarily small, the definition of a limit can be expressed in words:

lim f (x) = L means that the values of f(x) can be made as close as we please (o L
X=>C

by taking x close enough to c (but not equal to ¢ ).

More formally:
lim f (r) = L means that for every & >0 (no matter how small & is), we can find & >0 such that

X—>c

if x lies in the open interval (c -5, c+ &) and x #c, then f (x) lies in the open interval (L-¢, L+¢).

EXAMPLE 1: If lim(3x+4)=10, find a number 6 >0 such that |f(x)~ Z| < 0.01when |x—c|<s.

x—2

|(3x+4)-10] < 0.01
|3x+4-10] < 0.01

|3x - 6] < 0.01
|3(x-2)] <0.01
3|x-2]<0.01
|x-2]<0.03

% Conclusion: If x is within distance 0.03 of 2, then 3x+4 will be within distance 0.01 of 10.

EXAMPLE 2: Use the £— 5 definition of limit to show that lin§ (3x+4)=10

o You must show that for each & > 0, there exists a & > 0 such that t Bx+4)- EOf < & when 0< [ x=2 I <8,

e Your choice of & depends on &, so establish a connection between' (Bx+4)-10 I and ' x—2 l

From the previous example, f(3x+4)—10{ = f3x—6f= 3[x—2 [ < &.Foragiven ¢ >0, choose § =

w M

Hence, 0 < |x — 21<5=§ implies that ](3x+4)——101=3]x—-2[<3(-§-)=6‘




EXAMPLE 3: Use the ¢—¢ definition of limit to prove that lin} =4

You must show that for each & > 0, there exists a 8 > 0 such that l -4 | < & when 0< f x=2 ] <8

tx3_4r=fX—Z”x+2]‘ & & {x-al25
We want to bound +he

For all x in the interval (1,3), |x+2|<5.
or all x in the interval (1, 3), | x+2|< B ol )

. LIf S5\, then
Let & be the mln{:;‘,l}, - —S\.< x'__&<\ ;o
3< x+aa<5
So whenever 0<[x—2]<§,wehave: so 1w+ al <5
c_t_n_A _ X ¥ra Ls
,xz-—4l=|x—2l[x+2|<(§)(5)=5 |« -all ) J

WHY DO WE CARE ABOUT THIS?? Let’s consider functions of several variables.
2
Evaluate  lim %
(x,)—(0,0) x* + y

e The limits of the numerator and denominator are both 0, so the existence
(or nonexistence) of a limit by taking the limits of the numerator and
denominator separately and then dividing cannot be determined.

®  From the graph, it is reasonable to assume that the limit might be I = 0

2

Note: |y|<x*+»* and 2x

x4+ y?

Thus, in a & -neighborhood about (0, 0), we have 0 < x>+ y* < &, it follows that, for (x,»)=(0,0),

<1

5x%y
x*+ y?

e
= 5!y,(xz+yz)

51

< 55t 4

< 56

| f(x.y)-0] =

IN

Then, choosing & =§ , it follows that l (= y)——()‘ € 8y

5x? B%

Hence, lim =0

(1.3)-(0,0) x* + »?




Formal Definition of a Limit

Formal Definition of a Limit: (Epsilon-Delta)
Let f be a function defined on an open interval containing ¢ (except possibly at ¢) and let L

be a real number. The statement lim f (x)=L means that for each & >0 there existsa & >0 such

X—C

that if 0<|x—c|<d, then ‘f (x)—L‘<g.

v

C—0 C+o

Since |x—c| is the distance from X to ¢ and ‘f(x)— L‘ is the distance from f(x) to L and since ¢ can be

arbitrarily small, the definition of a limit can be expressed in words:
lim f (x) = L means that the values of f(x) can be made as close as we please to L

X—C

by taking X close enough to € (but not equal to C).

More formally:
lim f (x) =L means that for every & > 0(no matter how small & is), we can find § >0 such that

X—C

if X lies in the open interval (c—&, c+6) and X=c, then f(x) lies in the open interval (L—e, L+¢).

EXAMPLE 1: If Iirg(3x+4)=10, find a number 5>0 such that | f (x)-L|<0.01when |x—c|< 5.

| 3x+4)-10| < 0.01
|3x+4-10| < 0.01
|3x — 6] < 0.01
|3(x-2)| <0.01
3|x-2|<0.01
|x-2|<0.03

Conclusion: If x is within distance 0.03 of 2, then 3x+4 will be within distance 0.01 of 10.

EXAMPLE 2: Use the ¢ -6 definition of limit to show that Iirr;(3x+4)=10

e You must show that for each & > 0, there existsa § > 0 such that | (3x+4)—10| < & when 0<| x—2| <J.

e Your choice of & depends on &, so establish a connection between| (B3x+4)-10 | and | X—2 | .

From the previous example, | (3x+4)—10| = |3x—6| = 3| x—2| < & . For a given ¢ > 0, choose & =§ :

Hence, 0<|><—2|<5=% impliesthat|(3x+4)—1o|=3|x_2|<3(§j=g



EXAMPLE 3: Use the ¢ -6 definition of limit to prove that Iin; X2 =4

You must show that for each & > 0, there exists a & > 0 such that ‘ X% — 4‘ < & when 0<|x-2|<d5
‘x2—4‘=|x—2||x+2|

For all x inthe interval (1, 3), [x+2|<5.
. &
Let 5 be the mm{g,l}_

So whenever 0<|x—2|<d5, we have:
4| = [x-2|x+2] < (%)(5) p

WHY DO WE CARE ABOUT THIS?? Let’s consider functions of several variables.

2
Evaluate lim %
(xy)=>(0,0) X+ y

e The limits of the numerator and denominator are both 0, so the existence
(or nonexistence) of a limit by taking the limits of the numerator and
denominator separately and then dividing cannot be determined.

e From the graph, it is reasonable to assume that the limit might be L =0

2

Note: |y| < x*+y* and 2X <1

X2+ y?

Thus, in a & -neighborhood about (0, 0), we have 0 < /x* + y* < &, it follows that, for (x,y) = (0, 0),

5x°y
X°+y°

W2
= 5|y|{xz+ yz]

< 8ly|

5%+ y?

<56

[ f(xy)-0] =

IA

Then, choosing 5:% it follows that | f (x,y)-0| < .

2
Hence, lim X7y =0

(x¥)-(0,0) X% + y?




| 1.4
NEWTON’S METHOD -

i (a.k.a. “also known as” Newton-Raphson Method)
Newton’s Method involves a recursive formula which approximates the
- root(s) of continuous functions. (“Recursive” — the answer you get is
_ - then plugged into the formula repetitively.) TVT
DERIVATION OF THE FORMULA FOR NEWTON’S METHOD: conV er-gence,
,Q” The slope is given by f’(x)
" (f) The tangent touches the curve at the point (x,, /(x,))
/ } The tangent line equation in Point-Slope Form is:
e ,’//;f: X, y=f@x)=f'e)(x-x) from y—y, =m(x-x)]
Since the tangeni line intersects the x — axis al (x, 0) :
0—f(x)=f'x)(x,—x) Substitute the x — intercept.
=f(x) = %,1'(x) — x,f'(x) Distribute f’(xl) :
Begin to isolate x, term.
xlf, o) _ S ,(xl) = xzjj ) Divide each term by [ LEAN
f(x) F(x) Fx)
X - —['—(-)—C—Q- =% Simplify the equation.
f(x)
X, =% ——[7(-)—6—1)— This finds the “next” x.
()
By similar reasoning: x; =x, — & 5 C1e:
1 (x)
Newton’s Method: X, =X - S fi(x)#0

EFACS)
EXAMPLE 1: Use Newton’s Method to find the real, positive root for f(x), aproximated to five decimal places.

=x"+x2+x-1 Use IVT to approximate the location for the root.
g Ipp

f(0)=-1and f(1)=2, ~.3Jaroot,#, in (0,1)

S o .
Let x, =1 Xy =l Find f'(x), £'(1), and
et x x5 0 ind f'(x), f'(1), and f(1)
) =3 +2x+1, f'()=6, f1)=2 x —1—2—1——1——2
- Co T 6 3 3
= x, - L%2) 455556 xy=x - L0 L 054380
J'(x) S'0x)
%= x, - L) 054369 % = x— L) 054369
Sf(x) J0xs5)

When 2 iterations repeat themselves, you have found the closest approximation for the root.




a

. P.Z
EXAMPLE 2: Use Newton’s Method to find the real, positive root for f(x), aproximated to five decimal places.
3
xXy=x" -7 G <0
/) c.r_\(z) >0 Lt x, =2
£ (=) _
X, < Z = £y = [ Al
— _ el
X,= Lale m = 1.812938%45%
k3 = ¥y = f_u_‘_}__ ~ 1.9129311833 x. Xy
§10e0
—32
Also, €(xy) = | x 10
NOTE: Newton’s Method does not always work.
EXAMPLE 3: Use Newton’s Method to find the real, positive root for f(x), aproximated to five decimal places.
f)=x"-3x*+x-1
What happens if you choose x, =1? You get x, =1, x, =0, x, =1, x, =0, etc.
IVT s helpful £ _
xo_: ?’ = /‘PTZ—SS - Z.s
£ <o cc2®)
= 2.% - = AQu gl
$(8)>0 Xy Bl = TR
761_-_- )(’l — -—F’?fﬂ) o~ Q.Q(pqﬁ_q LeC
e )f(%O Answer: x =2.769292354
¥3=%2 T =22 2 3 ALq292354
Sometimes, you will have an unusually slow convergence. £0x2)
EXAMPLE 3: Use Newton’s Method to find the real, positive root for f(x), aproximated to five decimal places.
=8 L0d51 Y Las see how lorg it iakes to converge
X +1 L) =0 4o A
%o = 0 = £.98%\119
BURIE - S =
%y =i £'(0) ¥3; ©.a9uo051 2
_(:(0.53
= ) —_ <~ p.770 33 -
)(';L ©.S '—?‘TZB‘ES D’) ¥33 qu,_o."\c\’?o\(.g
; X
Wy & By = f(_:f&}. ~ 0.836,5303 %0 0. A9%50bL 2
£ (xa) X o.a494a52a5
1

_ 00,9990 2%¢C]!
¥ ™
)55 -~

Answer: x =0.9996261
% $4 (DA TG IS %70 999813026

Comment: Approximations are at the heart of calculus. Here, the tangetn line is thought of as an approximation of a
curve and used to approximate solutions of equations for which algebra fails.




NEWTON’S METHOD

(a.k.a. “also known as” Newton-Raphson Method)

Newton’s Method involves a recursive formula which approximates the
root(s) of continuous functions. (“Recursive” — the answer you get is

_/ then plugged into the formula repetitively.)
DERIVATION OF THE FORMULA FOR NEWTON’S METHOD:

The slope is given by f’(x)
The tangent touches the curve at the point (x,, f(x))

The tangent line equation in Point-Slope Form is:
y=f(x)=f'(x)(x=x) [from y—y, =m(x-x)]
Since the tangent line intersects the X —axis at (x, 0):

0-f(x)="f'"(x)(x,—%) Substitute the x — intercept.
=F00) =% 1'(¢) = x (%) Distribute f'(x,).
Begin to isolate x, term.

xf'o)  fe) _ xfx) Divide each term by f'(x,).

f'(x,) f'(x) f'(x)
Cfy)

—= =X, Simplify the equation.
()
f
Xy =X —& This finds the “next” X.
(%)
. . f
By similar reasoning: x, =x, — ,(Xz) , etc.
F(x,)
Newton’s Method: Xou = X, —%, f'(x,)#0
Xﬂ

EXAMPLE 1: Use Newton’s Method to find the real, positive root for f(X), aproximated to five decimal places.

f(x)=x>+x"+x-1 Use IVT to approximate the location for the root.

f(0)=-1and f() =2, .Jaroot,r, in (0,1)

Let x, =1 L, :1—:% Find f'(x), £'Q), and (1)
2 1 2
f'(x)=3x"+2x+1, f'(1)=6, f(1)=2 X, =1-=-=1--=2=
(X) @ @ . s 3=3"

X = %, — 12) L 0 55556 X = ¥ — ) 054382

f(X,) f'(x5)
X = x, - %) _ 054369 %, = % - %) 054369

f(x,) (%)

When 2 iterations repeat themselves, you have found the closest approximation for the root.



EXAMPLE 2: Use Newton’s Method to find the real, positive root for f(x), aproximated to five decimal places.
f(x)=x*-7

NOTE: Newton’s Method does not always work.

EXAMPLE 3: Use Newton’s Method to find the real, positive root for f(X), aproximated to five decimal places.
f(X)=x*-3x"+x-1

What happens if you choose X, =1? You get X, =1, X, =0, X, =1, X, =0, etc.

Answer: X =2.769292354
Sometimes, you will have an unusually slow convergence.

EXAMPLE 3: Use Newton’s Method to find the real, positive root for f(X), aproximated to five decimal places.

Answer: X =0.9996261

Comment: Approximations are at the heart of calculus. Here, the tangetn line is thought of as an approximation of a
curve and used to approximate solutions of equations for which algebra fails.



Riemann Sums

[

TOOLBOX:
Zh-w h=f(x) x; = a + (Ax)-k w=Ax=b“a
=1 n
n ) L b
Zf(xk)-Ax lim Zf(xk)-Ax = I f(x)dx
e n—»o = a
APPROXIMATION BETTER APPROXIMATION-

5
EXAMPLE 1: Write j (xz + S)dx as a Riemann Sum.
' c— l 1 L‘);‘l a=\

()= X +3

OX = ‘f*'l 1 ’ X =Y Dx oK
— g S R uk &
An= | (e = akl Fhey=l% =& Y3
i “, = 7\} | |\ k y l,\: ' ——)\
EXAMPLE 2: Write lim Z ,}1+§-’E oL | a5 o defni intenyl
n—>w n o n e i
v
-C()c): ....... AX» n

W
\feee > 3(orc 5o

£ = 5
EXAMPLE 3: Which of the limits is equal to L P
k ’ 1 Teoolbo¥ :
(A) lim (2+ j e Toolbo¥
e Z " dx=pv= B2 <
(B) hrn ( ) (e\\wuna:\'e_ A, e
n—y>owc
o =2
1
©) lim T |
“’Z s Sy = ¥

i
®) tim 3 (z + _n’i)

k=1

:!u

o
e = (a+ 28

EXAMPLE 4: The function fis given by f(x)=Inx. The graph of fis shown at right. Which of the following limits is

equal to the area of the shaded region? (from Big Book BC Test, p. 29 #29)

. 3k ’\-op\bo)c s
(A) lim (14—1 ( )]—~ _— 2 ¥
"""’*‘; n))n Bp= Lo E ["L“j |
IO By - T
(B) lim Zln(l+~3—~k—)— (ehm s
n—>w = 2=
n)n Yy 1+ =

( :.QY\V—
i

© lim Z ln( )(H‘%
(D) lim Z In(l + ﬂ)~

n-—w® n

(%) = ﬁﬂ(‘f_%L_
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DOUBLE INTEGRALS OVER RECTANGLES

FIGURE 1

L
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FIGURE 2

REVIEW OF THE DEFINITE INTEGRAL

In much the same way that our attempt to solve the area problem led to the definition of a
definite integral. we now seek to find the volume of a solid and in the pracess we arrive at
the definition of a double integral. '

First let's recall the hasic facts concerning definite integrals of functions of a single vari-
able. If F(x) is defined for @ = x < b, we start by dividing the interval [«. b] into n sub-
intervals fx, .. x.] of equal width Ax = {b ~ a)/n and we choose sample points x” in these
subintervals. Then we form the Riemann sum

1 Y FxF) Ax

R =

and take the limit of such sums as n —= % to obtain the definite integral of f from a to b:

1 " f(x) dx = tim 3, () Ax
e RS ey

In the special case where f(x) = 0. the Riemann sum can be interpreted as the sum of the
areas of the approximating rectangles in Figure 1. and [ f(x} dx represents the area under
the curve ¥y = fix} from a to b.
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VOLUMES AND DOUBLE INTEGRALS

In a similar manner we consider a function f of two variables defined on a closed rectangle

R=T[ab]x[e.dl={xy) ER|asx<b c=y=d}

and we first suppose that f(x, ¥} = 0. The graph of £ is a surface with equation = = f(x. ¥
Let S be the solid that lies above R and under the graph of /. that is,

§= {(x. vIERO=-sflay) () E R}

(See Figure 2.) Our goal is to tind the volume of 5.

The first step is to divide the rectangle R into subrectangles. We accomplish this by

dividing the interval [a, b] into m subintervals [x, 1, x.] of equal width Ax = (b ~ al/m
and dividing [c. d] into n subintervals [ ¥; 1, ¥;] of equal width Ay = {d — c)/n. By draw-




r/-
b

X &

FIGURE 4

FIGURE 3

Dividing R into subrectangles

Ty

5.3

ing lines parallel to the coordinate axes through the endpoints of these subintervals, as in
Figure 3. we form the subrectangles

R.=[r.nx]xX[vnyn]l= {ix. My gSxySEx, poSy s };;}

each with area A4 = AvAy

RE
o+
i
¥
g 0
Ay,
¥
o

o o

R, X ¥
_______ o s - T
_______ . i
.
L . - . » e = .
P . . 5 i " LI S ﬁx:‘y:;
_______ gk o U
A " . e % % T St e
. . LN | - ¢ € & .
~~~~~~~ TR SED -
87 1 *
——————— /”A““v - . . ¢ B L3 *
B2l B =TT
o0 - A R | A
I I T A
| A R | I R
A S . | A S .
@ 6 X Xioy X ] X
Ax

If we choose a sample point (v v¥) in each R, then we can approximate the part of
S that lies above each R, by a thin rectangular box (or “column™) with base R,; and height
Fix® v¥1 as shown in Figure 4. {Compare with Figure 1.1 The volume of this box is the
height of the box times the area of the base rectangle:

Sflxl,

¥ AA

If we follow this procedure for all the rectangles and add the volumes of the corresponding
boxes, we get an approximation to the total volume of §:

3]

V=3 3 flx¥ x5 aA

Lt Wi

{See Figure 5.) This double sum means that for each subrectangle we evaluate f at the cho-

sen point and multiply by the area of the subrectangle, and then we add the results.

-

FIGURE §
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FIGURE 7

FIGURE &

The Riemann sum approximations to
the volume under = = 16 — x° — 2v°
become more accurate as m and

n increase.

The sum in Definition 5.

TS ik o) AA

[ W ]

P-"l

is called a double Riemann sum and is used as an approximation to the value of the
douhle integral. INotice how similar #t is to the Riemapn sum in {1} for a function of a3
single variable.] If f happens to be a posirive function, then the double Riemann sum
represents the sum of volumes of columns. as in Figure 3, and is an approximation (o the

volume under the graph of f and above the rectangle R.

EXAMPLE 1 Estumate the volumi¢ of the solid that lies above the square

R = [0.2] > [0, 2] and below the clliptic paraboloid = = 16 - x* — 2y°. Divide R
into four equal squares and choose the sample point to be the upper right corner of
each square R,,. Sketch the solid and the approximating rectangular boxes.

{0LUTI0N The squares are shown in Figure 6. The paraboleid is the graph of

Flx. vl = 16 — x* — 2v" and the area of each square is |. Approximating the volume
by the Riemann sum with m = n = 2. we have

V= 2 S flx. vl AA

den} fael

= fLL1AA + f{1.2) AA + f(2. 1} AA + fi(2.2) A4
=131 - 71 00y ) =34

This 1s the volume of the approximating rectangular boxes shown in Figure 7.

_}

We get better approximations to the volume in Example [ if we increase the number of
squares. Figure 8§ shows how the columns start to look more like the actual solid and the
corresponding approximations become more accurate when we use 16, 64, and 256
squares. In the next section we will be able to show that the exact volume is 48.

|
{ z J
< 7

faam=n=3 V=415 (bym=n= 8§, V=44 875 (Crm=n=16, V= 46.46875




Riemann Sums

TOOLBOX:
> hew h=f (%) X = a+ (&%) w=ax=2-2
k=1 n
: b
D (% )-Ax lim Zf X ) AX = j f (x)dx
k=1 n— o a

APPROXIMATION

BETTER APPROXIMATION
EXAMPLE 1: Write f(x2 +3)dx as a Riemann Sum.

EXAMPLE 2: Write lim Z 3k

[ =. EJ as a definite integral.
n—ow n n

EXAMPLE 3: Which of the limits is equal to Lsxz dx?

(A) lim Z (2 + njzl

n

® M( ok

2+ ji
n

3
(D) nll_r)nw Zn: (2 + 37) %

(from Big Book AB Test, p. 29 #30)

k=1

EXAMPLE 4: The function f is given by f(x)
equal to the area of the shaded region?

(A) nlgn@Z(lHn( Di 5
(8) n@wz“m( 3"j3

n

© nlinw Z In( J(l + 4—kj

(from Big Book BC Test, p. 29 #29)

=Inx. The graph of f is shown at right. Which of the following limits is

n

(D) lim Z In(l + ﬂ) -

n)n
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DOUBLE INTEGRALS OVER RECTANGLES

FIGURE 2

FIGURE |

In much the same way that our attempt to solve the area problem led to the definition of a
definite integral, we now seek to find the volume of a solid and in the process we arrive at
the definition of a double integral.

REVIEW OF THE DEFINITE INTEGRAL

First let’s recall the basic facts concerning definite integrals of functions of a single vari-
able. If f(x) is defined for @ = x < b, we start by dividing the interval [, b] into n sub-
intervals [x,-, x;] of equal width Ax = (b — a)/n and we choose sample points x* in these
subintervals. Then we form the Riemann sum

n

1] 2 f(x?) Ax

=1
and take the limit of such sums as n — % to obtain the definite integral of f from a to b:
2] [bf(x) dx = lim Y, f(x¥) Ax
Ja A== =)
In the special case where f(x) = 0, the Riemann sum can be interpreted as the sum of the

areas of the approximating rectangles in Figure |, and J:’ f(x) dx represents the area under
the curve y = f(x) from a to b.
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VOLUMES AND DOUBLE INTEGRALS

In a similar manner we consider a function f of two variables defined on a closed rectangle
R =[a, b] X [c,d] ={(x,_v) ER*|lasx<b, c€y€d}

and we first suppose that f(x, y) = 0. The graph of f is a surface with equation z = f(x. y).
Let S be the solid that lies above R and under the graph of f, that is,

S={xy2) ER*|0=z<f(xy), (x,y) ER}

(See Figure 2.) Our goal is to find the volume of S.

The first step is to divide the rectangle R into subrectangles. We accomplish this by
dividing the interval [a, b] into m subintervals [x;-, x;] of equal width Ax = (b — a)/m
and dividing [c, d] into n subintervals [ y;-1, ¥;] of equal width Ay = (d — ¢)/n. By draw-




ing lines parallel to the coordinate axes through the endpoints of these subintervals, as in
Figure 3, we form the subrectangles

Ry = [xi-1, 5] X [y-1. 3] = {(x, V| xi1€x€x, Sy < y,}

each with area AA = Ax Ay,
YA

R if v(.\',‘. _\1)

. S — - + %

. )}'l ________ . . ®

Me——————

(32, ¥5)

) SE———

I
|
|
l
FIGURE 3 0 x

Dividing R into subrectangles vy

i

If we choose a sample point (x/F ¥¥)in each Ry, then we can approximate the part of
S that lies above each R;; by a thin rectangular box (or “column™) with base R and height
f(xf, ) as shown in Figure 4. (Compare with Figure 1.) The volume of this box is the
height of the box times the area of the base rectangle:

i (-!'1}', )’t}") AA

If we follow this procedure for all the rectangles and add the volumes of the corresponding
boxes, we get an approximation to the total volume of S:

@ V’“zlzlf(X.f.)';)M
i=] jw=
(See Figure 5.) This double sum means that for each subrectangle we evaluate f at the cho-
sen point and multiply by the area of the subrectangle, and then we add the results.

z 2

FIGURE 4 FIGURE 5



The sum in Definition 5,

b=

f(.x,',,", _VI‘T) AA
1

i

}

is called a double Riemann sum and is used as an approximation to the value of the
double integral. [Notice how similar it is to the Riemann sum in (1) for a function of a
single variable.] If f happens to be a positive function, then the double Riemann sum
represents the sum of volumes of columns, as in Figure 5, and is an approximation to the
volume under the graph of f and above the rectangle R.

YA 4 EXAMPLE | Estimate the volume of the solid that lies above the square
2 . 0(2.2) R = [0, 2] x [0, 2] and below the elliptic paraboloid z = 16 — x* — 2y Divide R
' into four equal squares and choose the sample point to be the upper right corner of
each square R);. Sketch the solid and the approximating rectangular boxes.

(I,l]' SOLUTION The squares are shown in Figure 6. The paraboloid is the graph of
Ry R, flx,y) = 16 = x* — 2y* and the area of each square is |. Approximating the volume
by the Riemann sum with m = n = 2, we have

Va3 3 flx.y) Ad

i=1j=1
=f(1,1)AA + f(1,2) AA + f(2, 1) AA + f(2,2) AA
= 13(1) + 7(1) + 10(1) + 4(1) = 34

This is the volume of the approximating rectangular boxes shown in Figure 7. a

We get better approximations to the volume in Example 1 if we increase the number of
squares. Figure 8 shows how the columns start to look more like the actual solid and the
corresponding approximations become more accurate when we use 16, 64, and 256
squares. In the next section we will be able to show that the exact volume is 48.
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The Riemann sum approximations to
the volume under z = 16 — x* — 2y°
become more accurate as m and

n increase. (@Aam=n=4,V=4L5 (bym=n=8, V=44 875 (c)m=n=16, V= 46.46875




Volumes of Revolution: The Shell Method

In the Disk and Washer Methods of finding volumes of solids, we revolved a region about the x- or y-axis. The
representative rectangle was perpendicular to the axis of revolution. This rectangle was used to find the height of
the slices before the revolution occurred, which in turn gave us the radius of the circular slice.

If the revolution was about a horizontal axis of rotation, the slices cut off intervals on the x-axis, so the function
was expressed in terms of x, the representative rectangle was perpendicular to the axis of rotation, and the limits of

integration were along the x-axis, [a, b].

If the revolution was about a vertical axis of rotation, the slices cut off intervals on the y-axis, so the function was
expressed in terms of y, (the inverse of (X)), the representative rectangle was perpendicular to the axis of rotation,

and the limits of integration were along the y-axis, [c, d].

When the revolution was about a vertical axis of rotation, the work got a little complicated because of the process
of re-writing the function in terms of y. There is another method which is useful when performing this type of
revolution, and it allows us to revolve about a vertical axis of rotation while leaving the function and limits of
integration in terms of x. This method is called the Shell Method. The significant difference between this
method and the Disk and Washer Methods is that the representative rectangle is parallel to the axis of rotation.
Therefore, if you want to revolve a region about a vertical axis of revolution, you will leave the function in

terms of x, and you will integrate on the interval [a, b} . The Shell Method is also useful when the region you

are revolving involves dividing it up because of its boundaries.

A cylindrical shell is a solid enclosed by two concentric right circular cylinders. The volume of the shell can be
found by finding the volume of the larger cylinder and subtracting the volume of the smaller cylinder. This
method (requiring no calculus) is fine if there are no curved surfaces. In general, the volume of a shell with R
representing the larger radius, and r representing the smaller radius, can be written as:

V = [area of cross-section] - [height] = [7R*— zr®]-h

= aR*-r’|h = 2(R+r)(R-r)h
Since the average radius of the shell is %(R +1) and its thickness is (R —r), this can be written as:

Vz2ﬂ[%(R+r)}-h-(R—r)

V = 2x[average radius|-| height]-[thickness]

The Shell Method
b d
V=27 p(x)- f (x)-dx V =2z p(y)- f(y)-dy

Vertical Axis of Revolution Horizontal Axis of Revolution
Note that h(X) is often used for the height of the representative rectangle.




EXAMPLE 1: Consider the region bounded by the x-axis and f (x) = (X - 2)2 +1on[2, 3]. Find the
volume of the solid obtained by revolving the region about the y-axis.

A V= Zﬁjjx {(X—Z)Z +1} dx =

= 27rj23x[(x2—4x+4)+1} dx = 27rf(x3—4x2+5x) dx =

1 4 3 273
R PV S S BN 2ﬂ(§—36+ﬁ)—(4—§+10j -
4 3 2| 4 2 3

41z units®
6

= If the region is bounded by two non-zero functions, f (x) and g(x), with f (x) > g(x), the height is found by
[ f (X)—g(X)], so the general formula becomes:

V =2z p(0) [ (x) - 9(x)] X

EXAMPLE 2: Let f(x)=3—x* and g(x) =3x—1 and let R be the region between the graphs of f and g

on [O, 1] . Find the volume of the solid generated by revolving R about the y-axis.

V= ZﬂI:x [(S—Xz)—(Sx—l)} dx since f(%) > g(%) Therefore:

= 27rfolx [—xz —3x+4} dx = 2ﬂj:(—x3 —3x? +4x) dx

x4 ' 1
= 27| —+x3-2x* = —27[[— +1 - 2} =
4 0 4

= —272'[—§} = 3—”units3
4 2

EXAMPLE 3: Find the volume of the solid generated by revolving the region bounded by the graphs of
y=x*+x+1 y=1, and x=1 about the line x=2.

Axis of
revolution

V = 2nj:(2—x)(x3+ X + 1—1)dx

= 272'".:(—X4 + 2% — X2+ 2x)dx
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Volumes of Revolution: The Shell Method

* In the Disk and Washer Methods of finding volumes of solids, we revolved a region about the x- or y-axis. The
representative rectangle was perpendicular to the axis of revolution. This rectangle was used to find the height of
the slices before the revolution occurred, which in turn gave us the radius of the circular slice.

= Ifthe revolution was about a horizontal axis of rotation, the slices cut off intervals on the x-axis, so the function
was expressed in terms of x, the representative rectangle was perpendicular to the axis of rofation, and the limits of

integration were along the x-axis, [a, b],.

s If the revolution was about a vertical axis of rotation, the slices cut off intervals on the y-axis, so the function was
expressed in terms of y, (the inverse of f{x)), the representative rectangle was perpendicular to the axis of rotation,

and the limits of integration were along the y-axis, [c, d] .

= When the revolution was about a vertical axis of rotation, the work got a little complicated because of the process
of re-writing the function in terms of y. There is another method which is useful when performing this type of
revolution, and it allows us to revolve about a vertical axis of rotation while leaving the function and limits of
integration in terms of x. This method is called the Shell Method. The significant difference between this
method and the Disk and Washer Methods is that the representative rectangle is parallel to the axis of rotation.
Therefore, if you want to revolve a region about a vertical axis of revolution, you will leave the Sfunction in

terms of x, and you will integrate on the interval [a, b] . The Shell Method is also useful when the region you

are revolving involves dividing it up because of its boundaries.

= A cylindrical shell is a solid enclosed by two concentric right circular cylinders. The volume of the shell can be
found by finding the volume of the larger cylinder and subtracting the volume of the smaller cylinder. This
method (requiring no calculus) is fine if there are no curved surfaces. In general, the volume of a shell with R
representing the larger radius, and r representing the smaller radius, can be written as:

V= [area of cross-section] . [height] = [7zR2 - 7rr2]~h

= 2R -r*|h = a[(R+r)(R-r)}h
Since the average radius of the shell is —;—(R + 7’) and its thickness is (R - r) , this can be written as:

V=z;zB(R+r)]h.(R-r)

V = 2r[average radius]-[ height]-[thickness]

The Shell Method
b d
v =2z p(x)- f(x)-dx v =2z p(y)- f(y)-dy
Vertical Axis of Revolution Horizontal Axis of Revolution

Note that /2(x) is often used for the height of the representative rectangle.
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EXAMPLE 1: Consider the region bounded by the x-axis and f(x) = (x - 2)2 +1 on [2, 3]. Find the

volume of the solid obtained by revolving the region about the y-axis.

V=22 x[(x-2) +1]ax =

= 2l x[(-ax+)+l]dr = 27f (-4 45x)de >

4 3 27
s pg % A LI} o g (§—36+f§)—(4-§%+10) -
i3 2| 4 2 3

= [fthe region is bounded by two non-zero functions, f(x) and g(x), with f(x) = g(x), the height is found by
[f (x)— g(x)] , S0 the general formula becomes:

v =2z p(x)[f(x)-g(x)] dx

EXAMPLE 2: Let f(x)=3-x" and g(x)=3x—1 and let R be the region between the graphs of / and g
on [O, I] . Find the volume of the solid generated by revolving R about the y-axis.

V= 27[£x [(3 —x*)—(3x— 1)} dx since f (—;—) > g(%) Therefore:

= 2zfx[-*-3x+d]dr = 27f (-x' -3¢ +4x)dx

4 l 1
3—27{%+x3——2x2:’ = —Zﬂ?l:z = 2} =

0

[ 3} 37 .,
= -2nl-—| = — units
4 2

EXAMPLE 3: Find the volume of the solid generated by revolving the region bounded by the graphs of
y=x’+x+1, p=1, and x =1 about the line x=2. y et
;\"::VI:ﬁiun
3

Vo= 2nf (2-x)(x'+ x +1- 1)

= ZEI;(—X4 F =% 2x)dx

i P
e '

5 4 3 1 :
=2”—L+"x——i+x2 1 :
5 2 3 . Meb=v 4 .
111 ) I
=27+ — == +1 WV
5 2 3
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Conic Sections

¢ A parabola is the set of points in a plane equidistant from a fixed point (called the focus) and a fixed line (called the

directrix).

Standard Form of a Parabola
HORIZONTAL VERTICAL

(r=4)' = 4p(x-H) (v) =4p(y-H)

General Form of the equation of a Parabola
HORIZONTAL: VERTICAL:
y* +Cx+Dy+E=0 x> +Cx+Dy+E=0

A parabola opens in the direction of the non-squared term!

¢ An ellipse is the set of all points in a plane whose distances from two fixed points (called the foci) is a constant sum.

Standard Form of an Ellipse
The equations must be equal o 1.
a>b
HORIZONTAL VERTICAL
3 2 2 2
(x=h) =k _ (x=n) =) _
2 + 2 =1 2 L 2 =1
a b b a
Major Axis is parallel to the x-axis. Major Axis is parallel to the y-axis.

General Form of an equation of an Ellipse:
Ax* +By* +Cx+Dy+E=0

2 2 R .
Note: the X~ and )~ terms are both positive, but A and B are different!

¢ A hyperbola is the set of all points in a plane such that the absolute value of the differences of the distances from two
fixed points (called the foci) is a constant.

Standard Form of a Hyperbola
The equations must be equal o 1.
“a” is in the positive term
HORIZONTAL VERTICAL

T e

a b? a’ b

Transverse Axis is parallel to the x-axis. ~ Transverse Axis is parallel to the y-axis.

General Form of an equation of a Hyperbola:
Ax*+By* +Cx+Dy+E=0
Note: A and B have different signs!




FIGURE &
Vertical traces are parabolas;

horizontal fraces are hyperbolas.

All traces are labeled with the
value of k.

FIGURE 7
Traces moved to their
correct planes

In Module |3.6A you can investi-
gate how traces determine the shape of a

surface.

EXAMPLE 5 Sketch the surface z = y

Why do we care?

~
s

- x%

{OLUTI0N The traces in the vertical planes x = k are the parabolas z = y* — k’, which
open upward. The traces in v = k are the parabolas = = ~x? + k%, which open down-
ward. The horizontal traces are y* — x* = k, a famnily of hyperbolas, We draw the fami-
lies of traces in Figure 6, and we show how the traces appear when placed in their

correct planes in Figure 7.

- e 1 : ) il T
%\ \2'\ I/ """3/\ 1
\‘\\ / :‘; . / 7\ ‘\‘ 0 X
\\4* /7 [N\ 7
Fi L\
\ *2 | ] \\ \ 1y

Traces in x=kare z=y* — &’

Traces in x =&

Tracesiny=£k

Tracesinz =kare y*' ~ x =k

Tracesinz=£&

In Figure 8 we fit together the traces from Figure 7 to form the surface 7 = y* — x°,
a hyperbolic paraboloid. Notice that the shape of the surface near the origin resembles
that of a saddle. This surface will be investigated further in Section 15.7 when we dis-
cuss saddle points.

FIGURE 8
The surface z =y —x’isa
hyperbolic paraboloid.
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TABLE | Graphs of quadric surfaces

Surfuce j Eguation ' Surface ; Equation
Eilinsoid i 2 :
Eilipsoid ¢ Cone X
w“-\' 'i' - =] L . ~r +' g
a@” 4 « , fw b*

Hﬁrimnmi traces are ellipses.
Vertical traces in the planes
x=kand v =k are
hyperbolas if & = 0 but are
paies of lines itk — 0

All traces are ellipss:t»z.
If @ = b = ¢, the ellipsoid is
a sphere.

(no frinus S \‘3'0

(no linear "'GY"MSS

;mﬁ“{f ?az”ﬁ(ﬂﬂ:{lfﬁ z i" V" ‘1: ‘y: ::
- *"‘—-**-r"\"“r = o= ]
a : b at T et

Horizontal traces are ellipses.
Vertical traces are hyperbolas.

The axis of symmetry
corresponds 1o the variable

Horizontal traces are ellipses.
Vertical traces are parabolas.

The variable raised to the
first power indicates the axis

- - ~ of the paraboloid. whose coefficient is negative.
¥ 4 ;
¥ (one. linecr +erm S8 | (one minus sign) ;
a :bua.dr‘a*io 4ermsuy | - -
SORe SN t ; e
Byt Paraboloid f 2 a ¥ y? ~ Hyperboleid of Two Shests ﬁ =y ¥ 2 -1
e i e a* fx’: ‘-'.3 ‘
Horizontal traces are Horizontal traces in z = k are
hyperbolas. i ellipses if k > cork < —¢.
Vertical traces are parabolas. Vertical traces are hyperbolas.
The case where ¢ < 0 is i The two minus signs indicate
illustrated. two sheets,

(one hWinea “erm;
a q\ua_a.ra.’nc_ terms

‘S’)

| (‘\'u.>0 minuS 5‘%"‘5}
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in Module 13.6B you can see how EXAMPLE 7 Identify and sketch the surface 4 =y + 272+ 4=0.
changing a. b, and ¢ in Table | affects the

shape of the quadric surface. SOLUTION Dividing by —4. we first put the equation in standard form:
—x= »'-’E- — —é—- e 1

Comparing this equation with Table 1, we see that it represents a hyperboloid of two
sheets, the only difference being that in this case the axis of the hyperboloid is the
y-axis. The traces in the xy- and yz-planes are the hyperbolas

=
4%

5 ¥ .
S S e | > = .-
i 4 0 and p

The surface has no trace in the xz-plane, but traces in the vertical planes y = k for
[k| = 2 are the ellipses

. ZE kl
=g oL Tk
which can be written as
2 4
x 4
Y ":}' = 1 o= k
Eo (2o :
4 4
FIGURE 10
4xt—y 427+ 4=0 These traces are used to make the sketch in Figure 10. O

EXAMPLE 8 Classify the quadric surface x* + 22° — 6x — y + 10 =0.

S0LUTION By completing the square we rewrite the equation as
y=1=(x~ 3P +27

Comparing this equation with Table 1, we see that it represents an elliptic paraboloid.
Here. however, the axis of the paraboloid is parallel to the y-axis, and it has been shifted
so that its vertex is the point (3, 1, 0). The traces in the plane y = k (k > 1) are the
ellipses

(x—3F+22=k—-1 y=k

The trace in the xy-plane is the parabola with equation y = 1 + (x = 3P, z=0.The
paraboloid is sketched in Figure 11.

FIGURE 11
£+28-6x—y+10=0




21-28 Match the equation with its graph (labeled 1-VIII). Give
reasons for your choices.

2 % Z
2 xP+ 4y + 927 =1 22. O+ 4yt + =1 @) <2 by
235~y k= M, —xP4yi-ie=]
25* }f! = g.rﬁ e ::i zé‘ },3 P ‘x% -+ 2:3

7. x* + 227 =1 28, y = x? — -

@ oa=b=c=1|

does not inter:
vz -plarne

\v‘i‘

axis 1e %—ax(s

@-no L, 2 haF
Swh‘sFD gy
for 840-
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=K >0
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Mars's orbit

23, A fuel-efficient way to travel from earth to Mars is to fol-

fow a semi-elliptical orbit known as a Hohmann trans-
fer orbit.® The spacecraft leaves the earth at the point on
the ellipse closest to the sun, and arrives at Mars at the
point on the ellipse farthest from the sun, as shown in
Figure 12.25. Let r, be the radius of earth’s orbit, and
rm the radius of Mars’ orbit, and let 2a and 2b be the re-
spective lengths of the horizontal and vertical axes of the
ellipse.

(a) Orienting the ellipse as shown in the figure, with the
sun at the origin, find a formula for this orbit in terms
of re, T, and b.

(b) It can be shown that b* = 2ar, — r2. Given this and
your answer to part (a), find a formula for b in terms
of ry, and r..

Figure 12.25

2Scientific American, www.sciam.com, March 17, 2000. Note that in an actual Hohmann transfer, the spacecraft would

begin in low earth orbit, not from the earth’s surface. Timing is critical in order for the two planets to be correctly aligned.
Calculations show that at launch, Mars must lead earth by about 45 degrees, which happens only once every 26 months. Note

also that the orbits of earth and Mars are actually themselves elliptical, though here we treat them as circular.




Hyperbola

‘ Parabola
FIGURE 9.67

A combination of parabolic and hyperbolic mirrors

'APPLICATIONS OF QUADRIC SURFACES

Examples of quadric surfaces can be found in the world around us. In fact, the world itself
is a good example. Although the earth is commonly modeled as a sphere, a more accurate
model is an ellipsoid because the earth’s rotation has caused a flattening at the poles. (See
Excreise 47.)

Circular paraboloids, obtained by rotating  parabola about its axis, are used to collect
and reflect light, sound, and radio and television signals. In a radio telescope, for instance,
signals from distant stars that strike the bowl are reflected to the receiver at the focus and
are therefore amplified. (The idea is explained in Problem 16 on page 202.) The same prin-
ciple applies to microphones and satellite dishes in the shape of paraboloids.

Cooling towers for nuclear reactors are usually designed in the shape of hyperboloids
of one sheet for reasons of structural stability. Pairs of hyperboloids are used to transmit
rotational motion between skew axes. (The cogs of gears are the generating lines of the
hyperboloids. See Exercise 49.)

£
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2
g
i
g
=
=
?;
2
2
E

A satellite dish reflects signals to Nuclear reactors have cooling towers Hyperboleids produce gear transmission.
the focus of a paraboloid. in the shape of hyperboloids.




Conic Sections

¢ A parabola is the set of points in a plane equidistant from a fixed point (called the focus) and a fixed line (called the
directrix).

Standard Form of a Parabola
HORIZONTAL VERTICAL

(y=k) =4p(x-h) (x=h)"=4p(y-k)

General Form of the equation of a Parabola
HORIZONTAL.: VERTICAL.:
y*+Cx+Dy+E=0 x*+Cx+Dy+E=0

A parabola opens in the direction of the non-squared term!

+ An ellipse is the set of all points in a plane whose distances from two fixed points (called the foci) is a constant sum.

Standard Form of an Ellipse
The equations must be equal to 1.
a>b
HORIZONTAL VERTICAL

2 2 2 2
(x=h)"  (y=k) _ (x=h)" . (y=k)
2 b ! &
Major Axis is parallel to the x-axis. Major Axis is parallel to the y-axis.

=1

General Form of an equation of an Ellipse:
AX* +By*+Cx+Dy+E =0

Note: the X2 and y2 terms are both positive, but A and B are different!

¢ A hyperbola is the set of all points in a plane such that the absolute value of the differences of the distances from two
fixed points (called the foci) is a constant.

Standard Form of a Hyperbola
The equations must be equal to 1.
“a” is in the positive term
HORIZONTAL VERTICAL

(x=h)" _(y=k) _, (y=k)' _ (x=h)’ |

a’ b? a’ b?
Transverse Axis is parallel to the x-axis. ~ Transverse Axis is parallel to the y-axis.

General Form of an equation of a Hyperbola:
AxX* + By’ +Cx+Dy+E=0

Note: A and B have different signs!




FIGURE 6

Vertical traces are parabolas;
horizontal traces are hyperbolas.
All traces are labeled with the
value of k.

FIGURE 7
Traces moved to their
correct planes

In Medule 13.6A you can investi-
gate how traces determine the shape of a
surface.

The surface z = y* — x*

hyperbolic paraboloid.

Why do we care?

EXAMPLE 5 Sketch the surface z = y* — x°.
S0LUTION The traces in the vertical planes x = k are the parabolas z = y* — k°, which
open upward. The traces in y = k are the parabolas z = —x* + k°, which open down-

ward. The horizontal traces are y* — x* = k, a family of hyperbolas. We draw the fami-
lies of traces in Figure 6, and we show how the traces appear when placed in their

correct planes in Figure 7.

z 4 ¥
+3 L
*1 7
/I 0, .
y x X
=1 0
*2 1N

-

Traces in x =k are z=y* — &? Traces in y=k are z = —x? + £’ Traces in z = kare y* — x* =k

ZA ..\w
\
1 - B
¥
X
-1
0 1

Tracesinz=k

Tracesin x= 14k Tracesin y =k

In Figure 8 we fit together the traces from Figure 7 to form the surface z = y* — x7,
a hyperbolic paraboloid. Notice that the shape of the surface near the origin resembles
that of a saddle. This surface will be investigated further in Section 15.7 when we dis-

cuss saddle points.

isa




TABLE | Graphs of quadric surfaces

Surface Equation Surface Equation
Ellipsoid ¥ .9 2 Cone | 2 x* ¥
—t gy ] | =g 1T
a* b ‘ | ¢* b

All traces are ellipses.

If a = b = ¢, the ellipsoid is
a sphere.

Horizontal traces are ellipses.

Vertical traces in the planes
x=kandy= kare
hyperbolas if &k # 0 but are
pairs of lines if A — 0.

Elliptic Paraboloid

.

r X2 .y
-y kY
¢ a b

Horizontal traces are ellipses.
Vertical traces are parabolas.

The variable raised to the
first power indicates the axis

PR
Horizontal traces are ellipses.
Vertical traces are hyperbolas.

The axis of symmetry
corresponds to the variable

. of the paraboloid. whose coefficient is negative.
s ‘n |
|
: I
Hyperbolic Paraboloid z x \_ Hyperboloid of Two Sheets _x oy .l l
e @b B2 - a® b 2

Horizontal traces are
hyperbolas.

Vertical traces are parabolas.

The case where ¢ < 0 is
illustrated.

Horizontal traces in z = k are
ellipsesifk > cork < —c.

Vertical traces are hyperbolas.

The two minus signs indicate
two sheets.




In Module 13.6B you can see how EXAMPLE 7 Identify and sketch the surface 4x =y +22+4=0.
changing a, b, and ¢ in Table | affects the

shape of the quadric surface. SOLUTION Dividing by —4, we first put the equation in standard form:
2 2
L Yz
—xtt——-—=1
4 2

Comparing this equation with Table 1, we see that it represents a hyperboloid of two
sheets, the only difference being that in this case the axis of the hyperboloid is the
y-axis. The traces in the xy- and yz-planes are the hyperbolas

,2

x=0

SIES
I
-

The surface has no trace in the xz-plane, but traces in the vertical planes y = k for
|k| > 2 are the ellipses

2 kz
2-}-z—=——1 y ===
YT y=k

which can be written as

x? z?
P t = —=1 y=k
—_—=-1 2—-1
FIGURE 10
4x =y +222+4=0 These traces are used to make the sketch in Figure 10. O

EXAMPLE 8 Classify the quadric surface x? + 227 — 6x —y + 10 = 0.

SOLUTION By completing the square we rewrite the equation as
y—1=(x—3¢+27

Comparing this equation with Table 1, we see that it represents an elliptic paraboloid.
Here, however, the axis of the paraboloid is parallel to the y-axis, and it has been shifted
so that its vertex is the point (3, 1, 0). The traces in the plane y = k (k > 1) are the
ellipses

(x =3P +222=k-1 y=k

The trace in the xy-plane is the parabola with equation y = 1 + (x — 3)*,z = 0. The
paraboloid is sketched in Figure 11.

FIGURE 1|1
X +27-6x—y+10=0




21-28 Match the equation with its graph (labeled I-VIII). Give
reasons for your choices.

2L X2+ 4y + 922 = | 22. x*+ 4y + 2=
23. x’—-y'+22=1 4. —x*+y?-2=]
25. y = 2x? + 7? 26, y'=x?+ 27

27. x* + 222 =] 28. y=x?-7?

I ' I




23. A fuel-efficient way to travel from earth to Mars is to fol-
low a semi-elliptical orbit known as a Hohmann trans-
fer orbit.* The spacecraft leaves the earth at the point on
the ellipse closest to the sun, and arrives at Mars at the
point on the ellipse farthest from the sun, as shown in
Figure 12,25, Let r, be the radius of earth’s orbit, and
Tm the radius of Mars’ orbit, and let 2a and 2b be the re-
spective lengths of the horizontal and vertical axes of the
ellipse.

(a) Orienting the ellipse as shown in the figure, with the
sun at the origin, find a formula for this orbit in terms
of 7e, ', and b.

(b) It can be shown that b* = 2ar. — r2. Given this and
your answer to part (a), find a formula for b in terms
of rp, and r..

% Eanhs o

‘ P Hohmann transfer orbit

Figure 12.25

2 2
a) [MJ+V_Z=1 b) b = Jrr,

L+r, b

IScientific American, www.sciam.com, March 17, 2000. Note that in an actual Hohmann transfer, the spacecraft would
begin in low earth orbit, not from the earth’s surface. Timing is critical in order for the two planets to be correctly aligned.
Calculations show that at launch, Mars must lead earth by about 45 degrees, which happens only once every 26 months. Note
also that the orbits of earth and Mars are actually themselves elliptical, though here we treat them as circular,



A satellite dish reflects signals to
the focus of a paraboloid.

w} (-

.
Hyperbola

‘ Parabola

FIGURE 9.67

A combination of parabolic and hyperbolic mirrors

APPLICATIONS OF QUADRIC SURFACES

Examples of quadric surfaces can be found in the world around us. In fact, the world itself
is a good example. Although the earth is commonly modeled as a sphere, a more accurate
model is an ellipsoid because the earth’s rotation has caused a flattening at the poles. (See
Excrcise 47.)

Circular paraboloids, obtained by rotating a parabola about its axis, are used to collect
and reflect light, sound, and radio and television signals. In a radio telescope, for instance,
signals from distant stars that strike the bow] are reflected to the receiver at the focus and
are therefore amplified. (The idea is explained in Problem 16 on page 202.) The same prin-
ciple applies to microphones and satellite dishes in the shape of paraboloids.

Cooling towers for nuclear reactors are usually designed in the shape of hyperboloids
of one sheet for reasons of structural stability. Pairs of hyperboloids are used to transmit
rotational motion between skew axes. (The cogs of gears are the generating lines of the
hyperboloids. See Exercise 49.)

g
:,_Q'
-]
=
g
1
x
g
=
2
-
=
£
&
=2
2
=

Nuclear reactors have cooling towers Hyperboloids produce gear transmission.
in the shape of hyperboloids.



p.4
Hvperbolic Functions

There is a special class of the even and odd combinations of the exponential functions ¢* and ¢ * which occur so

frequently they are given a special name: hyperbolic functions. They have the same relationship to the hyperbola that
trigonometric functions have to the circle.

¥

y=goshx

) v = fanh x

I e

Domain: { ~ 26, 56} Domain: { - %, 6} Domain; { = 22, o2}
Kange: { — oo, =0} Range: [1, 2 Range: {(~ 1. 1)
. 1 il gt g = 1 1 _ e+ e™”* sinhx e —e”*
sinhyx = —e*— —¢™* = —— coshx = —e*+ ™% = ——— tanhx = =
2 9 2 2 2 , 2 coshx ¥+ ¢ *

Note that the graphs of sinh x and cosh x can be obtained by the addition of ordinates using the exponential functions

1 _ . I . . inh
y= le" and y = - —e ¥, while tanhx is obtained from the ratio of —
2 2 cosh x

Definitions of Hyperbolic Functions

X —X
; e — e 1
sinhx = ——— cschx = —
2 sinh x
X —X
et + e 1
coshx = ——— sechx =
2 cosh x
sinh x cosh x
tanhx = cothx = —
coshx sinh x

e Some mathematical applications of hyperbolic functions occur in science and engineering when an entity like light,
velocity, electricity, or radioactivity is gradually absorbed or extinguished.

e The most common application is the use of hyperbolic cosine to describe the shape of oA
a hanging wire. It can be shown that if a heavy flexible cable is suspended between — e
two points at the same height, it takes the shape of a curve with equation i

X

y=c+ acosh( ), called a catenary (from the Latin word cafena, which means

a
“chain™).

e The Gateway Arch in St. Louis is a structure designed using a hyperbolic cosine function.




/

L

e Another hyperbolic function application occurs in the description of ocean waves. The
velocity of a water wave with length L moving across a body of water with depth d is

modeled by the function v = —g—litanh (37—;—61] where g is the acceleration due to gravity.

27

Recall that if 7 is any real number, then the point P(cos t, sin t) lies on the unit circle x> + y* =1

because cos’ ¢+ sin®r=1 , and 7 can be interpreted as the radian measure of ZPOQ , and it

represents twice the area of the shaded circular region. This is why trigonometric functions are also
called circular functions.

Y& Preoshy, sinhn

Likewise, if 7 is any real number, then the point P(cosh¢, sinh t) lies on the right branch of the /
Ny
hyperbola because cosh?z—sinh®#=1 and cosh# > 1. This time, ¢ does not represent the measure D«hé—«m—»

of an angle, but it does represent twice the area of the shaded hyperbolic sector.
F.o- "r =1
e Hyperbolic functions provide the ability of using hyperbolic substitutions instead of trigonometric substitutions for

radical expressions, and they sometimes lead to simpler answers. However, trigonometric substitutions are more

commonly used because trigonometric identities are more familiar than hyperbolic identities.

1
Consider I_lxll —x? dx. This requires integration by parts ( I udv = uv — jvdu ) and trigonometric substitution.

2
j\/l—xzdx = xW1-x? ~j X & gAY, fp = s dre e, and v

1——x2 1-x
x2
= X 1—x2 + J- dx x =sin @, dx = cos 8dO, and \/l—x2 :\/l—sin29=\/00520:c059
1-x2
) sin® @ ind¢
= x\Jl-x° + j g(cosﬁdﬂ)
— 2
= xVl-x* + jl—%—gdﬁ
Ji-%*%
1 11
= x\1-x" + Ejue - E.chosza(zom) sinB= %
1
= X 1—x2 + —2—9 — isinzﬂ + C g=sin"'x, sin20 = 2sindcosl

1 o
= x\/I—x2 - %[sin_lx - sianosé’] + Ci= xxll—x2 - E[sin Ty - x\/l—xzjl + C
[xx/l—xz + sin“lx] + C y=A1l-x

1 £
—[xx/l-xz + sin“lx} = % -1 1 x
-1

1
2

.f 1-x% dx

Il

1
2

I

1
Hence, _‘-_1 1-x% dx




L

Many of the trigonometric identities have corresponding hyperbolic identities. Consider the following:

X -x 2 X s 2 2x -2x 2x ~2x
cosh? x—sinh?x = | 1€ e =g _e +2+e e 2+ 3&31
2 2 2 2 4

And also:

X sk x -X 2x . ~1x
2sinhxcoshx = 2 il cte - = L. = sinh2x
2 2 2

Since hyperbolic functions are defined in terms of exponential functions, it is easy to derive rules for their derivatives.

Hyperbolic Identities Derivatives of Hyperbolic Functions
3 oy d. .
cosh”x —sinh“x =1 };[smhx] = coshx
tanh® x + sech® x = 1 d
5 5 ———[coshx] = sinh x
coth“x —csch”x =1 ax
i = 2si d
sinh2x = 2sinh xcoshx —-—[tanhx] = sech®x
cosh2x = cosh? x + sinh? x dx
5 cosh2x—1 i{cethx] = — esch® x
sinh“x = —8 — dx
2 d
2 cosh2x+1 —[sechx] = — sech xtanh x
cosh"x = —— dx
. d
-—-[cschx] = — cschxcothx
dx

The derivatives of inverse hyperbolic functions resemble.

Inverse Hyperbolic Functions

adF d _ d

;ﬁ—r[smh 1u:| - uz+} ;l;[csch Iu:l = ul ,_.___1 " J.—————,__az.é[_.u_._z_ = ln(
d _ ! d 1
E[cosh 1;4] ui‘—l Cbc[sech u] u\/: J.m

u +\1u2i az) + C

a+u

I

d 4.7 . # d a1 v du 1 oa+ u? + o
Ex—[tanh x] = . dx[ceth x] = - j———-———u !__aZi = = —-c;ln————«——-———M + C

T
Now consider LI 1+ x% dx . This requires integration by parts ( Iu dv =uv - jvdu ) and hyperbolic substitution.

J. 1+x2dx = xl+x? j d = xJl+x? - —;—[—sinh"lx + x\}l+x2] + C

\11+x
J'\/1+x dx = 2[x\/l+x2 + sinh™ x]+ C

I 1
Hence, _[1 1+x%dx = é[x\/1+x2 + sinh‘lx} ~ 2.296
) & -1




Hyperbolic Functions

There is a special class of the even and odd combinations of the exponential functions * and e™* which occur so
frequently they are given a special name: hyperbolic functions. They have the same relationship to the hyperbola that
trigonometric functions have to the circle.

A}
y = cosh x

Domain: {— 5. 56) Domain: (- oc, o0) Domain: (— 22, o2)
Range: (— oo, o0) Range: [1, o) Range: (—1,1)
X —X X —X . X —X
. 1 1 _ e" —e 1 1 _ e"+ e sinh x e"—e
sinhx = —e*—- Ze ¥ =2 —~ coshx = —e*+ Ze ¥ =2 —~ tanh x = =
2 2 2 2 2 2 coshx X4 g%

Note that the graphs of sinhx and cosh x can be obtained by the addition of ordinates using the exponential functions
sinh x
coshx

y = 1eX and y=- Lo , While tanh x is obtained from the ratio of
2 2

Definitions of Hyperbolic Functions

) et — e
sinhx = ———— cschx = _1
2 sinh x
X + —X 1
coshx = gre sechx =
2 cosh x
sinh x cosh x
tanhx = cothx = —
cosh x sinh x

e Some mathematical applications of hyperbolic functions occur in science and engineering when an entity like light,
velocity, electricity, or radioactivity is gradually absorbed or extinguished.

e The most common application is the use of hyperbolic cosine to describe the shape of
a hanging wire. It can be shown that if a heavy flexible cable is suspended between
two points at the same height, it takes the shape of a curve with equation

X

y=cCc+ acosh( j called a catenary (from the Latin word catena, which means

a

“chain”).

e The Gateway Arch in St. Louis is a structure designed using a hyperbolic cosine function.




e Another hyperbolic function application occurs in the description of ocean waves. The I e e .

velocity of a water wave with length L moving across a body of water with depth d is A T
. L 27d . . .
modeled by the function v = g—tanh (%) where g is the acceleration due to gravity. ‘L— Eee S——
T
¥4
Recall that if t is any real number, then the point P(cost, sint) lies on the unit circle x* + y* =1 P
because cos?t+ sin?t =1, and t can be interpreted as the radian measure of ~POQ , and it S OL_LQ -
represents twice the area of the shaded circular region. This is why trigonometric functions are also \ /'” _
called circular functions. T st
¥4 Picosht,sinh 1)
. . . . . L -
Likewise, if t is any real number, then the point P(cosht, smht) lies on the right branch of the \ /
hyperbola because cosh?t—sinh?t=1 and cosht >1. This time, t does not represent the measure —**T‘—*—"—’
of an angle, but it does represent twice the area of the shaded hyperbolic sector. / ] \
|
r=y=1

¢ Hyperbolic functions provide the ability of using hyperbolic substitutions instead of trigonometric substitutions for
radical expressions, and they sometimes lead to simpler answers. However, trigonometric substitutions are more

commonly used because trigonometric identities are more familiar than hyperbolic identities.

1
Consider I_lxll— x2 dx.. This requires integration by parts ( Iu dv = uv - J'vdu )and trigonometric substitution.

2
lel—x2 dx = xv1-x> — J.\/l_i(? dx u=v1-x*, du = 1__Xx2 dx, dv = dx, and v = x

dx X =sin@,dx = cos@d@, and \/1—x2 :\/1—sin29 :\/cosze =cosf

1
>
H&‘
|
>
N
+
2
=}
[\S]
N
—
[}
(@]
(2]
)
o
)
~—

Il
x
ﬂ
x
N
+
—
T
Q
(@]
w
N
O
o
N
)

I
>
ﬂ
>
)
+

1 11
~11d@ - == 20(2do
2I 2 2-[COS (2d9)

1 1 .
= xJ1-%x% + =6 — =sin26 + C 6 =sin""x, sin20 = 2sindcosd
2 4

2
j 1-x%dx = 1[xxll—x2 + sin‘lx} +C y=V1-x’
2

Hence, J'_llxll— x? dx

1

1 o r

—[x 1-x% + sin 1x} - Z _1 1 X
2 1 2

= xxll—x2 - 1[sin‘lx - sinecose} +C = x\/1—x2 - é[sin‘lx - xxll—xz} +C




Many of the trigonometric identities have corresponding hyperbolic identities. Consider the following:

X —x\? X _ a=X 2 2X —-2X 2X _ —-2X
coshzx—sinh2x=[e ;e J _(e Ze ] - +22+e _ ¢ 22+e :%:1

And also:

X a-X X -X 2X 42X
2sinh xcoshx = Z[e Ze j[e +€ ] - ¢ 26 = sinh2x

2

Since hyperbolic functions are defined in terms of exponential functions, it is easy to derive rules for their derivatives.

Hyperbolic Identities Derivatives of Hyperbolic Functions

cosh? x — sinh? x =1 di[sinh x] = coshx
X
tanh? x + sech® x = 1

d
) ) —[coshx] = sinhx
coth” x —csch” x =1 dx

- _ . d
sinh2x = 2sinh xcosh x = [tanhx] = sech? x

cosh2x = cosh? x + sinh? x (?jx
- cosh2x -1 —[cothx] = - csch®x

sinh®“x = —— dx
d

2 cosh2x +1 —[sechx] = — sech xtanh x
cosh® x = ———— dx
d

—[eschx] = — csch xcoth x
dx

The derivatives of inverse hyperbolic functions resemble.

Inverse Hyperbolic Functions

’

dr .  _ u d _ -u' du

Chl N e el A A
d _ u’ d _ -u’ du 1 J|a+u
e A e e

d _ u' _ u' du 1 a+ Jui+ a?
&[tanh 1x] _1—u2 —X[coth 1x] =1—u2 Ju . ——gln |u| + C

1
Now consider [ +1+x? dx. This requires integration by parts ( {udv = uv — |vdu )and hyperbolic substitution.
1 q p yp

I\/1+7dx = x\/1+7—j

2

\/X_z dx = xv1+x® — %[— sinh™x + xy1+ xz} +C
1+ X

j 1+x2dx = i[x\/1+x2 + sinh‘lx} + C \/ y=V1+x

1 1 i
Hence, Jl\/1+x2 dx = %[ J1+x% + sinhlx} ~ 2.296 -1 1 X
- 4
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@ Trigonometric Integrals P

¢ OK, now the integration gets more involved and the commitment to the memorization of trigonometric
identities, trig (unit circle) values and trigonometric integration rules up to this point will determine the
ease with which students adjust to this new material. The techniques you will now utilize involve integrals
which do not conform to the simple “u du” or “integration by parts” rules.

¢ Some identities which you should recall are:  (in addition to Circular Function definitions involving x, y and )
Pythagorean Identities: Product-to-Sum Identities: (2 different angles)

sinx+cos’x =1 sinacos 8 = -;—[sin(a - B)+sin(a + B)]
tan’ x +1=sec’ x sinasinﬁ=—;—[cos(a——ﬁ)—cos(a+ﬂ)]

cot’ x+1=csc’ x cosqcos B = %[cos(a - B)+cos(a + B)]

Double-Angle Identities: Power-Reduction Identities:
| —COSAX
B o

sin2x = 2sin xcosx sin2x=é(l—coszx) =

cos2x=cos’x—sin’x = 2cos’x—1 = 1-2sin’x coszx=%(1+cos2x) S |+ cosAX
|+ cosax
2
EXAMPLES:

1. J‘ sin 7xcos3x dx (Use Product-to-Sum Identity) a=T7x B =3x

= fl(sin4x+sin10x)dx u=4x v=10x
2

11, Lp. .
= E{Zfsm 4x(4dx)+;6 I sin 10x(10dx)} Recall: J.smu du=—cosu+C

1 1 .

= — —cosdx — —coslOx+C
8 20

2. _‘.Sin4 xcos’ x dx = (Rewrite the integral, and then use a Pythagorean Identity)

X « ) s \2

— Jsm“ xcos? xcosx dx = _fsm" x(cos‘ x) cos x dx
. . 2

= J.sm“ x(I— sin? x) cos x dx
. 4 . 2 . 4

= |sin”x{1-2sin“ x+sin” xjcosx dx

= j(sin“ x—2sin® x + sin® x)cosx dx

= J. sin® xcos x dx— ZJ sin® xcosx dx + jsins xcosx dx Note the “u du” form

= %sin5x - %sin7x + —;—singx + C if u = sinx.




prd

¢ By using a similar technique for integrals of similar types, the following rules develop:

_[ sin” x cos” x dx Procedure Relevant Identities
Split off a factor of COSX
nis odd Apply the relevant identity cos’x = l-sin’x

Make the u-substitution: # = sinx

Split off a factor of sin x

m is odd Apply the relevant identity sin®x = l-cos’x
Make the u-substitution: # = cosx
m is even Reduce the powers on sin x and cosx sin® x = 12(1 —cos2x) 4
LOS l,\,. : cos ;‘\‘ - ,:~“\;’:\ 5 ‘ -
=(1-si 1) =8N 2 = 1=ASIN X = CEDi=
n is even (Use relevant identities) cos’x = —;:(1 +cos2x) 4
CoS2Ax = ced *x — ST Y
= cose — (1—cos* ) 3 QcosZe 1=
¢ Let’s look at that last example again, in light of the above rules and using u-substitution: ESR 0
I sin® xcos’ x dx = Use the 1° procedure from above.
= jsin4 xcos® xcosx dx = J.sin4 x (cos2 x)2 cos x dx Apply Identity
- 4 .2 )2 .
=% J'sm x(l—sm x) cos x dx u = sinx, du=cosx dx
== ju“(l—uz)z du = !u“ (I—Zu2 +u4)du
1 2 1
= J.(u“ —2u° +u8)du = ~u'- S+ —’+ C
5 7 9
1. 2 . 1.
= —sin’x — =sin’x + —sin’x + C
5 7 9
MORE EXAMPLES:
3. J.sin3 xcostx dx = Use the 2™ procedure from above.
= Isinz xcos xsinx dx = .[(I-—cosz x)cos4 xsinx dx u = cosx, du=—sinx dx

= —j(l—uz)u“du =5 —I(u"—ué)du =% —G—us— —;—u7)+ C

1 5 I 7 o
= ——cos’x + —cos' x + C
5 7




&

4, jsin“xcos“xdx =

p3
(sin* 0" (cos*x)™ dx

Use the 3" procedure from above.

ALOHA

= j( [1-cos2x Te[lwoszx]jzdx

=5 j‘%(l - cogx)(l - coszx)(l + cgs Zx)(llcios 2x)dx

( DTS peirs)
Pair the conjugate factors!

=% T%J‘(l ~cos’ 2x%ﬁdx =5 1L6vf(sin2 ?.x)2 dr = %J‘sin4 2x dx u=2x, du=2dx

= g—i—j sin*u du Now, if v=S8InuU, there is no way to get “dv” so you cannot integrate this easily

without combining other identities and integration techniques (Integration by Parts)

Therefore, the following general reduction formulas will be useful:
fsin"xdx = ——Lsin"‘lxcosx ER Jsin"“zxdx
n n
j-cos” xdx = —l—cos”‘1 xsinx + z—l jcos”‘2 x dx
n n
These general formulas yield specific cases for the following:
&5 1 1. 5 1 1.
J.sm xdx = —x — —sin2x + C Icos xdx = —x + —sin2x + C
2 4 2 4
Isirﬁx dx = %cosg’x — cosx + C "‘cos3xdx = sinx — %sirﬁx + C
Jsin"xdx = §~x - —l—sian + —1—sin4x + C Icos"xdx = ix + —l—sin2x + -I—sin4x + C
8 4 32 8 4 32

Continuing our example, and applying the rule for j sin x dx, the integral j'sin4 u du becomes:

1(3 1. 1
= —|-u — —sin2u + -—sm4u) + C Recall: u=2x
3 1 . ‘ ]
= ——x — ——siné4x + sin8x + C ;\
128 128 1024 2 |+ Ccosa(29))
cosAx LR )
(3- ) _ iz —F L,). & 9. ‘ J

5. Prove the reduction formula forjcos4 x dx .

2cos2x

1+cos2x 2 1 cos? 2x ]
j‘cos4xdx:>j‘~————~———~) dx=>_[~+ + dx =
2 4 4 4

= —}de + %J‘cos 2x(2dx) + %jdx * %jcos4x(4dx)

=% 3x + —I—sian + —Lsin4x + C
8 4 32

1 2cos2x 1(1+ cosdx
f — o B = dx
4 4 4 2




6. Prove the reduction formula forJ‘sin3 x dx.

J'sin3 x dx

Pt

= j‘(sin2 x)sinx dx = I(l—coszx)sinxdx u=cosx, du=-—sinx dx

= -[(1-v) du = —(u—%zﬁ) +C

:%us—u+C zécossx—cosx+C

¢ Likewise, the Tangent and Secant functions also have reduction formulas:

In general:
j.tan" xdx = tan"t x — J‘tzm”‘2 x dx
n-—1
—_ n-2
Isec" xdx = (sec"'2 x tan x) + J.sec x dx
n—1 n-—

(50’0l ~(300-1]
. e-[3-]

= —-%-\—l 5@

jtanz x dx

Itan3 x dx

These general formulas yield specific cases for the following:

= tanx —x + C jsec"‘xdx = tanx + C

Il

%tanzx - In[secx[ + C !sec3xdx = é—secxtanx + %In[secx-!—tanx[ + C ||k

Recall: Itan x dx

= ln{secx[ + C and J.secxdx = In|secx + tanx| + C. *

¢ Using integration techniques and substitutions, the following rules develop:

J'tan"’ xsec” x dx

Procedure Relevant Identities

Split off a factor of sec’ x

n is even Apply the relevant identity sec’x = tan’x + 1
Make the u-substitution: # = tanx
Split off a factor of secxtanx

m is odd Apply the relevant identity tan’ x = sec’x — 1
Make the u-substitution: # = seCx

m is even Reduce the integrand to powers of secx alone tan’ x = sec’x — 1

n is odd Use the reduction formula for powers of secx




= o5

MORE EXAMPLES:
7. Itanz xsec’' x dx = Use the 1* procedure from above.

=5 Itanz xsec” xsec’ x dx
= '{tanzx(l+tan2 x)seczx dx u=tanx, du=sec’x dx
= J'uz(uzﬂ)du
=5 J.(u4 +u2)du
= —;—us-i- §u3+ C = %tansx + %tan3x + C
8. _‘-tans xsec’ x dx = jtanz xsec’ x(secxtan x)dx Use the 2™ procedure from above.

= I(secz x —l)sec2 x(secx tan x)dx
u=secx, du=secxtanx dx

= f(uz —l)uzdu

= J.(u" —uz)du

I T o Ssaely = Loec®a @ C
5 3 5 3

_ Z
9. Itanz xsecx dx = \+ tan? % = 5eCTX Use the 3 procedure from above.
=5 j(secz x— 1)secx dx

— j(secg’ x—secx)dx

= jsechdx-Jsecxdx
1 ot i \\A*

1
= —secxtanx + Elnlsecx+tanx| - 1nlsecx+tanx + C

1 1
=% Esecxtanx - 5:1nlsecx+tanx, + C

Wallis’ Formulas provide a quick way of evaluating E cos” x b

jECOS" x dx e 2 .i4.. _6- e e ® E:_.:.}:.
0 3NS5 )\7 n
2. Ifniseven (n>2),then

e - (200) K

1. Ifnisodd (n 2 3), then

sin®xd x
These formulas are also valid if cos” x is replaced by sin” x. :=?
=l o &
Check by evaluating Example #6 on { 0, %} . ¥ ="h © 3

_—
—_—---




Trigonometric Integrals

¢ OK, now the integration gets more involved and the commitment to the memorization of trigonometric
identities, trig (unit circle) values and trigonometric integration rules up to this point will determine the
ease with which students adjust to this new material. The techniques you will now utilize involve integrals
which do not conform to the simple “u du” or “integration by parts” rules.

¢ Some identities which you should recall are: (in addition to Circular Function definitions involving x, y and r)

Pythagorean ldentities: Product-to-Sum ldentities: (2 different angles)
sin® x+cos” x =1 sinacos,b’:%[sin(a—ﬂ)+sin(a+ﬂ)]

tan® x +1=sec” x sinasin,B:%[cos(a—ﬂ)—cos(a+ﬂ)]

cot? x +1=csc? x COS COS 3 = %[cos(a — B)+cos(a+ f)]
Double-Angle Identities: Power-Reduction Identities:

sin2x = 2sin xcos X sin2x=%(1—coszx)

cos2x =cos® x—sin’x = 2cos? x—1 = 1—2sin%x coszx=%(1+c032x)

EXAMPLES:
1. Isin 7xcos3x dx (Use Product-to-Sum Identity) a=7X £ =3x

= j%(sin4x+sin10x)dx u=4x v =10x

101, . 1 .. .
= E[;Ism 4x(4dx)+EJ.sm 10x(10dx)} Recall: jSInu du=-cosu+C
= - 1cos4x - icolex+C
8 20

2. Isin“ xcos® x dx = (Rewrite the integral, and then use a Pythagorean ldentity)

- . 2
= Ism“xcos“xcosx dx = J.sm“x(cos2 x) cos x dx
o4 c02 )2
= Ism x(l—sm x) cos x dx
= Isin“x(1—25in2x+sin4x)cosx dx
= I(SiﬂAX—ZSiI’]GX—I-Sing x)cosx dx
= _[sin“ X COS X dx—2jsin6 X COS X dx+_|.sin8 X Ccos X dx Note the “u du” form

= 1sinsx - zsin7x + 1s;ingx + C if U= Sinx.
5 7 9



¢ By using a similar technique for integrals of similar types, the following rules develop:

jsin”‘ xcos" x dx Procedure Relevant Identities

Split off a factor of COSX
nis odd Apply the relevant identity cos’x = 1-sin®x

Make the u-substitution: u = sinx

Split off a factor of sin x
m is odd Apply the relevant identity sin®x = 1—cos® x
Make the u-substitution: u = cosx

m is even Reduce the powers on sin x and cos X sin? x = %(1—cos 2X)

nis even (Use relevant identities) cos® X = %(1+ C0s 2X)

¢ Let’s look at that last example again, in light of the above rules and using u-substitution:

Jsin4xcossxdx = Use the 1% procedure from above.
io4 4 4 2 )2 ;
= Ism xcos* xcosx dx = Ism x(cos x) cos x dx Apply Identity
o4 s 2 )2 ;
= J.sm x(1-sin® x)" cos x dx u = sinx, du=cosx dx

= ju4(1—u2)2du = Iu4(1—2u2+u4)du

= J.(u4—2u6+u8)du Lo 2y L
5 7 9

= 1sinsx - zsin7x + 1singx + C
5 7 9

MORE EXAMPLES:
3. jsins xcos* x dx = Use the 2" procedure from above.

= J'sinz xcos? xsinx dx = J'(l—cosz x)cos4 Xsin x dx u = cosx, du=-—sinx dx

= —I(l—uz)u“du = —I(u“—ue)du = —@us— %u7j+ C

= —lcossx + lcos7x + C
5 7



4. .[Sin4 xcos* x dx = Use the 3" procedure from above.
2 1 2
= _[( 1- cost] (§[1+c052x]j dx
= I%(l—cos 2x)(1—cos2x)(1+cos 2x)(1+cos 2x) dx Pair the conjugate factors!
1 2 2 1 s 2 1¢..4
= —j(l—cos 2x) dx = —I(sm 2x) dx = —jsm 2x dx u=2x, du=2dx
16 16 16

= 5 IsinA u du Now, if V=SINU, there is no way to get “dv” so you cannot integrate this easily

without combining other identities and integration techniques (Integration by Parts)

Therefore, the following general reduction formulas will be useful:

. 1. . n-1¢. .
J.sm”xdx = —Zsin"txcosx + —_fsm” 2 x dx
n n

1 _ . n-1 i
_[cos”xdx = Zcos"txsinx + ——=|cos"? x dx
n n

These general formulas yield specific cases for the following:

J.sinzxdx = 1x - 1sin2x +C Icoszxdx 1x + 1sin2x +C
2 4 2 4

) 1
Ism"‘xdx = gcos3x — cosx + C J'cossxdx

sinx — %sin3x + C

§x + 1sin2x + isin4x + C
8 4 32

_[sin“ xdx = gx — %sin 2X + 3—125in4x + C Icos“x dx

Continuing our example, and applying the rule for Jsin“ x dx , the integral J sin®u du becomes:

i §u — lsin2u + isin4u + C Recall: U= 2X
32\ 8 4 32

= ix — isin4x + isin8x + C
128 128 1024

5. Prove the reduction formula forjcos4 X dx.

4 1+ cos2x 1 2cos2x  cos®2x 1 2cos2x 1(1+ cos4dx
Icosxdx:j— dx:>_[—+ + dx:>J_+ 4+ =
2 4 4 4 4 4 4 2

= %J.dx + %_[cost(de) + %Idx + 3—12Icos4x(4dx)

= Ex + 1sin2x + isin4x +C
8 4 32

]



6. Prove the reduction formula for'[sin3 x dx.

jsin‘*xdx = j(sinzx)sinxdx = I(l—cosz x)sinxdx u=cosx, du=—sinx dx

= -[(1-v*)du = —(u—%uﬂ +C

:>%u3—u+c :%cos3x—cosx+c

¢ Likewise, the Tangent and Secant functions also have reduction formulas:

In general:
_[tan” x dx = iltan“x — _ftan”f2 X dx
— n-2
Isec” X dx = i(sec"*2 X tan x) + n—zfsec X dx
-1 n-1

These general formulas yield specific cases for the following:
Itanzxdx:tanx—x+C jseczxdx:tanx+c

1 1 1
Itan3xdx = Etanzx — Injsecx| + C Isec?’xdx = Esecxtanx + Eln|secx+tanx| + C

Recall: _[tanxdx = Infsecx + C  and J'secx dx = Injsecx + tanx| + C.

¢ Using integration techniques and substitutions, the following rules develop:

jtanm xsec” x dx Procedure Relevant Identities

Split off a factor of sec? x
nis even Apply the relevant identity sec’x = tan’x + 1
Make the u-substitution: u = tanx

Split off a factor of secxtan x
m is odd Apply the relevant identity tan®x = sec’x — 1
Make the u-substitution: U = SeCX

m is even Reduce the integrand to powers of SeCX alone tan®x = sec’x — 1
nis odd Use the reduction formula for powers of SeC X




MORE EXAMPLES:
1. _[tanz xsec’ x dx = Use the 1% procedure from above.

= Itanz xsec? xsec? x dx
= jtanzx(1+tan2 X)seczx dx u=tanx, du=sec?x dx
= J'uz(u2+1)du
= I(u4+u2)du
= 1u5+ 1u3+ C = 1tanE‘x + 1tan3x + C
5 3 5 3
8. jtan3 xsec® x dx = I tan” xsec” x(sec x tan x) dx Use the 2™ procedure from above.
= I(secz x—l)sec2 X (sec x tan x) dx
u=secx, du=secxtanx dx
= J'(uz—l)uzdu
= j(u“—uz)du
= lu5— 1u3+ C = lsecE‘x - 1sec3x + C
5 3 5 3
9. Itanz xsecx dx = Use the 3" procedure from above.
= I(sec2 x—l)secx dx
= I(secSX—sec x)dx

= Isec3 X dx—jsecx dx

1 1
= Esecxtanx + Eln|secx+tanx| — Injsecx+tanx| + C

1 1
= Esecxtanx — Eln|secx+tanx| + C

Wallis’ Formulas provide a quick way of evaluating IOE cos" x dx

1. Ifnisodd (n=3), then

o35} (52

2. Ifniseven (n=>2),then

o (3[218)- (2

These formulas are also valid if cos" x is replaced by sin" x.

Check by evaluating Example #6 on [o, % :
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\\w/ Trigonometric Substitution

¢ We are concerned with integrals for which none of the basic rules apply and which contain expressions

of the form:
Ja? -2, J& +u*, and NuP-d°

in which a is a positive constant and u is a function of x. The basic idea for evaluating such integrals is
to make a substitution for x that will eliminate the radical in the integrand. We will do this with the

Pythagorean Identities for cos? @ =1-sin’@, sec’d=1+tan"6, and tan’6 =sec” @ —1.

Consider the right triangle:

. u )
sind=— = wu=asind. u
a
& -ut = Ja*-da*sin’ 8 a —u"
Sin© -'%,
= d*(1-sin’9)
= Ja’cos’d = acosl cosO> 0 since
e s acute
¢ The following relationships arise:
Expression in  Substitution Restriction Simplification
Integrand on 0
> 2 . T T 2 2 2 3 @ B 7 2
1. a —u u=asint ——<fL— a—-u? =a —-a’sin“8 = a“cos” 6
2 2
2 2 T T 2, .2 2 2, .2 2 2
2. a +u u=atand ——5<9<—2— a+u’ =a+a’tan" @ = a“sec
T
059<5, (if u=za)
3. Jul-4& u=asecl W —a* = a’sec’0-da* = a’tan’ 0
T )
—<@<r, (fus-a)
2
The triangles for #2 and #3 are:
H#2:
u
W —a
= a
@he—% secoc "i

¢ Note that it is important to be able to correctly set up the triangle as you solve these problems.

o There is a new twist to changing the limits of integration. You must be able to express the upper and lower
limits as an angle so you can evaluate the integral.




/,/_““x
Sy

>
_ 2
1. Evaluate: j‘ 92x dx x=3sind and dx=3cosfdb 7A)
%
Ja-x*
Also, V9—x* = \9-9sin* 0 = J9cos* @ = 3cosd Note: cos8 >0 on [_l, ﬁ}
27 2
J- i dx I3COSH 3cos@do
x? 9sin
cos* @ 2 2
= J-sinzﬁ d9 = [cot’0do = [(csc’d-1)df
N 3sinB 9_x2
= —cotd -0 +C % _ &inB And since cot8 =
3 5
e (&
9—x? 9—x? X i (3)
I ——dx = - —sin_l(—)+C
X x 3
-" 1 s X
2. Evaluate |———=dx x=2tanf and dx=2secfdb
©
2 2
x\Jx + 4 o

Also, \Jx*+ 4 = J4tan’ O + 4 = 1/4(tan2¢9 +1) = 4sec’§ = 2secl

vl

=
>

=

1
“xﬂ/x2 + 4 &

2sec’> 8do
4tan’ @ - 2secd
_j secH

tan? 9
_1_J- 1 _c0526’ 3 _J‘[cosﬁj
47\ cos@ sin*é sin® @
lju‘"’a’u=—lu_1+C = == 1 + C
4 4 4sin @
_cscé’ L C

4

2
X+ 4 L C

4x

Some Special Integration Formulas:

j\/ wdu = (a arcsmz + uNa* —u ) + C

I\/uz —-d’du =
j\/u2 +atdu =

a
2 2 2
uNu>—a> —a"hnlu + Ju'-a’|| + C, u>a
( w+a® + P lnju + u2+a2)+C

Note: 6 on

And since cscl =

Put everything in terms of sine and cosine

u=sin@ and du=cos@db




S
3
3. Evaluate J.jﬁ/z il

3 3
u=2x, x=—tand and dx =—sec’ 8d0

(4° +9)3/2

Also \/ 4x* +

When x=0, tan@ =0, so & =0. When x:3«/§/2, tan @ =+/3, so 0=r/3.

J-3\/5/2 x

3

rﬁ/z X

0 (4x2 + 9)3/2

S =

= J.;\/1+x2 dx

= I:M sec’ 0 dé

Il

32 0

0 (4x2 +9)

9 = \9tan’ 0+9 = 3secd

27
“tan® @

/3 3 3 5
2 “gsec” #db

dx = 3
27sec’ 6 2

2 2
[ax®4

e

p.3

3 er3tan’ @ 3 ¢x38in’ @
= do = = "~ do
1690 secd 167° cos” @
3 ca3l—cos’ @ .
[ —=""singdb u=cos 6 and du=—sin6ddo
16790 cos“ @
3 e121—17
dx = — — — du When =0, u=1. \Nhene:s,u:l
1691 u 2

- %H%wj —(1+1)} =3—32-

4. Find the arc length of the graph of f(x)= %xz from x=0 to x=1.

j;,/n[ @7 dx

Recall formula for arc length

fx)=x

a=1, x=tan6, and dx = sec’ O d6

1 1
Recall:jsec3 xdx =—secxtanx+ —In{secx +tanx| + C
2 2

[}isecﬁtanﬁ + %1n|sec€+tan0|:|

%[«/5 +in(v2 + 1)] ~ 1.148

/4

0

QX




Trigonometric Substitution

¢ We are concerned with integrals for which none of the basic rules apply and which contain expressions

of the form:
Ja?—u?, +Ja?+u?, and u’-a’

in which a is a positive constant and u is a function of x. The basic idea for evaluating such integrals is
to make a substitution for x that will eliminate the radical in the integrand. We will do this with the

Pythagorean Identities for cos’ @ =1-sin’6, sec’@=1+tan’#, and tan’d =sec’ 1.
Consider the right triangle:

. u )
sin@=— = Uu=asiné. a u
a

a’-u? = +a?-a’sin’é a’-u?
= JJa’(l-sin®*@)
— Ja’cos’d = acosd

¢ The following relationships arise:

Expression in  Substitution Restriction Simplification
Integrand on @
2 2 . T T 2 2 2 2.2 2 2
1. a“-—u u=asind —ESQSE a“—u® = a“—-a“sin“d = a“cos- @
2 2 T T 2 2 2 2 2 2 2
2. a“+u u=atanéd _E<9<E a“+u- = a“+a‘“tan“gd = a“sec- g
ose<%, (if u>a)
3. u?—a? u=asecd u’—a® = a’sec’0d—a® = a’tan’o
T <<z, (fu<-a)
2
The triangles for #2 and #3 are:
#2: #3:
a’+u’ u u
u?—a?
0 0
a a

¢ Note that it is important to be able to correctly set up the triangle as you solve these problems.

¢ There is a new twist to changing the limits of integration. You must be able to express the upper and lower
limits as an angle so you can evaluate the integral.



2
\/9)(—2X dx

1. Evaluate: J- x=3sind and dx=3cosfda
Also, N9-x* = +/9-9sin’@ = \9cos’@ = 3cosd Note: cos6 >0 on [,L ”}
2 2
\N9—X? 3cos
I 5 dx = J' - 20 3cosfdo
X 9sin“ @

= ICOS Hde = _[cotzed@ = jcsc 6 — 1)d6?
sin“ @
97x2
= —cotd - 6 +C And since cot@ =
X
_ 2 _ 2
.[ 92X dx = — 9-X —Sin_l[zJ—k C
X X 3

1
2. Evaluate | ————=dx
'[xzw/x2+ 4

Xx=2tand and dx=2secfddé@ ‘

Also, \[x* + 4 = J4tan’

.[ \/ﬁ

0+ 4 = ,/4(tan2¢9+1) = «J4sec’ 6 = 2secd Note: & on (‘% %)

J 2sec’ 0dé
4tan® @ - 2secd

secé? o . .
—.[ Put everything in terms of sine and cosine
tan? 49
cos 6 (cos@ _
= —I = —_[ u=sin@ and du=cos@dé@
cos@ sin’ @ sin“ @
1 1
= —Iu’zdu =—-—-ut+C -—— _+C
4 4sin @
csc o _ X+ 4
-———— 4+ C And since cscd =
X
SV RS
X2\x% + 4 4x

Some Special Inteqration Formulas:

J'\/a —u?du (a arcsm% + u\/az—uzj +C

I\/u —a’du = (u\/u —a? - azln‘u + u2—a2)+ C, u>a
I\/u +a’du = (u\/u +a’ +a In‘u + u2+a2) +C




3

3V3/2 X 3 3
3. Evaluate J. — dx u=2x, x=—tan@ and dx=—sec’6d@
0
(4x2 +9) 2 2

Also \/4x* +9 = /9tan?0+9 = 3seco

When x=0, tan@=0, so #=0. When x=33/2, tand=1/3, so 0=r/3.

27, 3
“tan’@
3\3/2 NG 7/3 3
(4x2 +9) 27sec’ 0 2
3 cr3tan® @ 3 ¢x/3sin* 0
= do = = [7"22 dg
1670 secd 1670 cos” @
3 ¢7/31—C0s* 6 .
— —Zsmﬁd@ u=cos® and du=—sinddeo
1670  cos‘d
343/2 X3 3 (y21-u? 1
jo ———p X = - —| ———du When @=0, u=1. When 0=3, u=-—
(4X2+9) 16 u 2

2
- 32 M(l—u‘z)du - i(u+l}
16 1 16 uj,

4. Find the arc length of the graph of f(x):ix2 from x=0 to x=1.

1 2
S = J‘01/1+[f’(x)] dx Recall formula for arc length

1
= IO\/1+ x? dx £/(x) = x
/4
= .[0 sec®9 do a=1 x=tand, and dx =sec’ 0dO

1 1
Recall: jsecg xdx = —sec x tan x + —In|sec x + tan x| + C
2 2

1 1 /4
= [Esecetane + Eln|sec(9+tan8|}

0

_ %[\/E +In(V2 +1)} ~ 1.148



@’j Double Integrals and Volume

Find the volume of the solid region bounded by the paraboloid z = 4 — x* — 2y~ and the xy-plane

z=0 in the xy-plane, so the base region is the ellipse x*+2y° = 4
4-x°

Variable bounds for y: —

Constant bounds forx: -2 < x <2

Vo= j.jm(4 = —3 2)a’yafx

33 (4-+°)/2 !
B[R P e
| }f—/ ) - (ot P - (-2 (J/ )]Ax

f[((t\ x‘)f“?‘ = l(f’) Y
PR CE PICEG,

a. 2 X
( e e N v . M o
= I 2 CR J3
»z ) ‘l
o . FROF
| T Aot | At ext)
—_ZE - iz 2 - AJa
4 r2 5132 4 2 2T
_:j_2(4~x) dx = mjlzli@—x) }dx a ”
[
. 2\
%
a )c\x e :
dx = acos@d@

[
) 2

. x . 2 2
2 sihnd=— = x=uasinf a —u

/

I

!

(i

/

/

2
*
NCED)

R

2 2

S T - [a-asmno

g\r‘—i(l‘ﬁ“x (\- c\)( ) :m \/az—-u2 = \/az—azsinzé’ = \/az(l—sinze)
/ = 2 lcosie 2 E
= a cos & = acosl

-2, ;
2 /
# = 2cos®
JUcog*e = acos®
. T

(3 S
o (L\‘X ) e s 5 .
= ) _ . . _ %
- 3= 3Y(2(«05 9) (Qws@é&}lfx 2sin @, then 2sinf =+2 = sinfd==1,and 8 5

- =7 (2cos.9) (2c0s0d0)

6 (cos 9)4 do = —f;_—(z)_[:/z (cos 6’)4 deo
2

_3_3_;_‘1;21 ;
o ot (X))

Use Wallis’ Formula:
2

= 31\2/§(16) = 42x




Double Integrals and VVolume

Find the volume of the solid region bounded by the paraboloid z = 4 — x> — 2y? and the xy-plane.
z=0 in the xy-plane, so the base region is the ellipse x* + 2y? =

2 2
Variable bounds fory: - 4_2X <y< 4_2X

Constant bounds for x; —2 < x < 2

Y, —f _[“A:X 2/2( —x2—2y2)dydx
) 3 (a) 2
- j_z{(4— xz)y - %} dx
:LJ. (4— 2)3/ dx = LJ'Z [(4—X2)1/2de a

N N

[

sin6?=i = x=asiné a’—u’
dx = acos@ddd

\/az—u2 = \/az—azsinze = \/az(l—sinze)
= \/azcosze = acosé

If x = 2sin@, then 2sin@=+2 = sind==+1 and 0 =

20050 2cos@do
20 (2eos0t0)

= cosH ‘4o = V) cose do
WA A

. zn 1\(3)(5 n-1\(
Use Wallis’ Formula: _[02 cos xdx=|—=1||=-||l—-1| --| — || —
2 4 6 n 2

128 (37
= 22122 = aorn
3&(16)

I+
NN
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@ Cobb-Douglas Production Models P
' (Why do we care about implicit differentiation?)

In.economics, a production model is a mathematical relationship between the output of a company or a country and the
labor and capital equipment required to produce that output. Much of the pioneering work in the field of production
models occurred in the 1920s when Paul Douglas of the University of Chicago and his collaborator Charles Cobb
proposed that the output P can be expressed in terms of the labor  and the capital equipment X by an equation of the
form

P = cI°K?
where ¢ is a constant of proportionality and @ and £ are constants such that 0 < ¢ <1 and 0 < B < 1. This is called

the Cobb-Douglas Production Model. Typically, P, L and K are expressed in their terms of their equivalent monetary
values.

EXAMPLEL:

A toy manufacturer estimates a production function to be f(x,y) = 100x°° y0'4 . Compare the production level when
x=1000 and y =500 with the production level when

x=2000 and y=1000. 2= 100x%6y"

When x=1000 and y =500, the production level is

(1000, 500) =100(1000°¢)(500)™* ~ 75,786.

When x=1000 and y =500, the production level is
(2000, 1000) =100(2000°¢)(1000)™ ~ 151,572.

< . ! S00 7 1000 1500 2000
Note that by doubling both x and y, you double the production level. (1000, 500

Level curves {at increments of 10,000}
"EXAMPLE 2:
03_.0.7

The surfboard company you own has the Cobb-Douglas production function P(x,y) = xy"" where P is the number

of surfboards it produces per year, x is the number of employees, and the y is the daily operating budget (in dollars).

2 Find Y Pis o conshmnt Ay o3 ¢
dx 4 (xo.s O.’l) Ax T 0.1 *
C= 9
-0 6.1 02, _ -0.3\4dy ail
0= 0.3% 30 + X (0-’1‘& ) Ax ﬂ = - E.i- ‘d.) ‘Ludge;l' ih$
o.q 0.3 d)" ’7 X l \Lé &o{:
‘0‘3 :s — O-q X " dﬂ gl N ern?loyees
x_o-"l 5 0.3 Ax

b) Evaluate the derivative at x =30 and y=10,000 and interpret the answer.

d;%— _ 3 (IO,OOOB S | 11 _—3 — BB per cmplonce,
Ax | xsz0 = filsay

5=|o,000

. Das l:j budge¥ s decreasin slq3l 3§T e,;.c,;oaiihlinzes
@Mp\o ee. o% emp\pﬁme\-\‘\' e o 9

[ &-,:) . v-— b(ﬁ 5 andZa deily Dpefa:""f\g bwdge:(— ot #10,000.
Trcreas e 4 us o G W

worker (Oill save approx.

B1U3 perdary 51




CX) p. &

EXAMPLE 3:

The Jim Saki Company manufactures cotton athletic socks. Production is partially automated through the use of robots.
Daily operating costs amount to $50 per laborer and $30 per robot. The number of pairs of socks the company can
manufacture in a day is given by a Cobb-Douglas production formula

06,04

qg=50n

where ¢ is the number of pairs of socks that can be manufactured by n laborers and r robots. Assuming that the company
wishes to produce 1.000 pairs of socks per day at a minimum cost, how many laborers and how many robots should it
use?

The objective is to minimize the daily cost C = 50# + 307 with constraints given by the daily quota of 1,000

and the fact that » and r are nonnegative.

1,000

1,000 = 50n"7** = n* =_2—
50r™

50,04 0.4 r4/0‘6 r2/3 r2/3

1/0.6

(%) yos ( 1,000 J/ [ 20 )1/"’6 207207 14736
n = SO N =) —- = ~

r

147.36
rz/s

Now: C(r) » 50( )+30r = 7,36872 + 30

The remaining constraint is that » > 0

To find the minimum value of C(r), take the derivative and set it equal to 0.
C'(r) ~ =4,912r" 7+ 30 = 0 when r ~ (0.006107)% ~ 21.3
Hence, the cost is minimized at about C(21.3) ~ $1,600

Preblems:

1. The number of CDs per hour that Snappy Sounds can manufacture at its plant is given by P = x°¢ yo'4 where x is

the number of workers at the plant and y is the monthly budget (in dollars). Assume P is constant, and compute

% and interpret the results when x =100 and y =200,000.

Answer: — 3,000 per worker. The monthly budget to maintain production at the Jixed level P is decreasing by
approximately 33,000 per additional worker at an employment level of 100 workers and a monthly operating budget of
$200,000

2. Your automobile assembly plant has a Cobb-Douglas production function given by ¢ = x*°3*° where q is the

number of automobiles it produces per year, x is the number of employees, and y is the daily operating budget (in
dollars). Annual operating costs amount to an average of $20,000 per employee plus the operating budget of
$365y. Assume you wish to produce 1,000 automobiles per year at a minimum cost. How many employees should
you hire? |
Answer: Minimize cost C = 20,000 x + 365y subject to x*y" = 1,000. C has a minimum at x ~ 135, so you
should hire 135 employees.




Cobb-Douglas Production Models
(Why do we care about implicit differentiation?)

In economics, a production model is a mathematical relationship between the output of a company or a country and the
labor and capital equipment required to produce that output. Much of the pioneering work in the field of production
models occurred in the 1920s when Paul Douglas of the University of Chicago and his collaborator Charles Cobb
proposed that the output P can be expressed in terms of the labor L and the capital equipment K by an equation of the
form

P = cL*K”
where c is a constant of proportionality and « and g are constants such that 0 < ¢ <1 and 0 < f# < 1. Thisis called

the Cobb-Douglas Production Model. Typically, P, L and K are expressed in their terms of their equivalent monetary
values.

EXAMPLE]:

A toy manufacturer estimates a production functiontobe f(x,y) = 100x°'6y0'4 . Compare the production level when
x=1000 and y =500 with the production level when
X =2000 and y=1000. 2= 1002y

When x=1000 and y =500, the production level is Y ¢=80,000 c= 160,000

f (1000, 500) =100(1000°°)(500)"* ~ 75,786. \\\\\\
&)ﬂ 1000)

. . | 500 /1000 1500 2000
Note that by doubling both x and y, you double the production level. (1000, 500)

When x=1000 and y =500, the production level is 1000
(2000, 1000) = 100(2000°°)(1000)"* ~ 151,572. 500

b

Level curves (at increments of 10,000)
EXAMPLE 2:
03,,0.7

The surfboard company you own has the Cobb-Douglas production function P(X,y) = X"y~ where P is the number
of surfboards it produces per year, x is the number of employees, and the y is the daily operating budget (in dollars).

a) Find ﬂ
dx

b) Evaluate the derivative at x=30 and y =10,000 and interpret the answer.



EXAMPLE 3:

The Jim Saki Company manufactures cotton athletic socks. Production is partially automated through the use of robots.
Daily operating costs amount to $50 per laborer and $30 per robot. The number of pairs of socks the company can
manufacture in a day is given by a Cobb-Douglas production formula

q — 50 n0.6r0.4

where q is the number of pairs of socks that can be manufactured by n laborers and r robots. Assuming that the company
wishes to produce 1.000 pairs of socks per day at a minimum cost, how many laborers and how many robots should it
use?

The objective is to minimize the daily cost C =50n + 30r with constraints given by the daily quota of 1,000

and the fact that n and r are nonnegative.

os _ 1,000

1, 000 =50 n0'6r0'4 = N = p—y
501"

0.6
061205 (1,000 T 20 WO° potos 0% 147.36
(n ) - 0.4 S0 N =|-52 = e o © 2/3
50r™ r- re r r

Now: C(r) ~ 50(@) +30r = 7,368r %%+ 30r
r

The remaining constraint is that r > 0

To find the minimum value of C(r), take the derivative and set it equal to 0.
C'(r) ~ —4,912r%%4+ 30 = 0 when r ~ (0.006107)%° ~ 21.3
Hence, the cost is minimized at about C(21.3) ~ $1,600

Problems:

1. The number of CDs per hour that Snappy Sounds can manufacture at its plant is given by P = x*° yo'4 where x is

the number of workers at the plant and y is the monthly budget (in dollars). Assume P is constant, and compute

d .

d_y and interpret the results when x =100 and y=200,000.
X

Answer: — $3,000 per worker. The monthly budget to maintain production at the fixed level P is decreasing by

approximately $3,000 per additional worker at an employment level of 100 workers and a monthly operating budget of

$200,000

2. Your automobile assembly plant has a Cobb-Douglas production function given by q = x**y**where q is the

number of automobiles it produces per year, x is the number of employees, and y is the daily operating budget (in
dollars). Annual operating costs amount to an average of $20,000 per employee plus the operating budget of
$365y. Assume you wish to produce 1,000 automobiles per year at a minimum cost. How many employees should
you hire?
Answer: Minimize cost C = 20,000 x + 365y subjectto x*y** = 1,000. C has a minimum at X ~ 135, so you
should hire 135 employees.



ﬂ// Applications of the Determinant P

Determinants can be used to solve systems of linear equations as well as determining if a matrix has an inverse. They are
also useful in many other situations, for example, in the computation of the cross product of vectors. The cross product of
two vectors produces a vector which is orthogonal to the two vectors. If the cross product is 0, it confirms parallel vectors.
Its magnitude produces the area of the parallelogram have the two vectors as adjacent sides. The magnitude of the cross
product of two vectors divided by the product of their magnitudes produces the sine of the angle between the two vectors.
The theory of determinants is rather attractive and deserves study on its own merits.

If a matrix is an nth-order matrix (# rows and n columns) its determinant is an nth-order determinant.

The value of a second-order determinant is given by: “ b = ab, — ba,.
a, b
For a 3"%-order matrix, the process is similar, but more detailed:
aq b ¢
Method 1: a, b, ¢)|=abec, + abec, + a,bc, — abe, — abge, — abe,
a, by ¢
+ o+ o+ - = -

= 4 (bzc3 - b3cz) - b (azca - ascz) + G (azbs _azbz)
Another way to compute this determinant is by minors and cofactors. Block out the row and column of cofactor
a, and multiply @, by its 2™ second order determinant. Do the same with the cofactors &, and ¢, . The cofactor is

also multiplied by (—1) "/ Wwhere i is the row of the cofactor, and j is the column of it.

a b ¢
bz G, a, ¢ a, 2 + - +
a b, c| = q - b + ¢
b3 G a; G a, 3 - + =
a b ¢
+ - +
= 4 (bzc3—-b362) - bl (azcs - a3cz) + ¢ (azbs—%bz)
EXAMPLE 1: Find the value of the determinant:
3 2 7
Method 1: 15 3| =35(6) + 232 + T-(=1)3)— 2:5-7 =(=3)-3-3-(-6)(-1)-2
2 -3 -6
=-90+12+21-70+27-12 = =112
3 2
5 3 -1 3 -1 3
Method 2: -1 5 Ji.= 3= - 2 7-
-3 -6 2 -6 2 -3
2 -3 -6

= 3.(=3049) — 2:(6-6) + 7-(3-10) = 3(=21) + 0 + 7(-7) = -63-49 = —112




p.l

Cramer’s Rule is rarely taught in Algebra 2 and Pre-Calculus courses now, but using determinants and the process of
expanding my minors to solve systems of equations is easy, and it will spark a procedural memory in later when these
students work with the cross product, partial derivatives, gradients, del operators and Jacobians.

EXAMPLE 2: Solve the system using Cramer’s Rule

2x -3y +4z =1
b +6z=0
3x — 2y =5

] D t is the determinant of the coefficient matrix.
’ D, l is the determinant of the matrix with the constant column replacing the coefficients of x.
y

I D ‘ is the determinant of the matrix with the constant column replacing the coefficients of y.

l D, | is the determinant of the matrix with the constant column replacing the coefficients of z.

D
The variables are found by these ratios: x = IDXI y = u g = |DZ
|D| D) D]
2 -3 4 -3 4
|D| =1 0 6 =-38 |D,| = 0 6/ =-78
3 20 5 20
2 1 4 2 -3 1
|D,| =11 0 6 =-22 |D,| =[]t 0 0 =13
350 3 25
N A ) B _-2_n ool 13 1
T o] T 38 19 YT o] T 19 "D T T3 38

Considering the messy solutions to this system of equations, this is by far an easier way to solve the system rather than
other methods such as substitution, Gaussian elimination, or inverses and matrix equations. And teaching this simple
method will make the process of working with vectors easier as students continue in their mathematical skills and
analysis.




Applications of the Determinant

Determinants can be used to solve systems of linear equations as well as determining if a matrix has an inverse. They are
also useful in many other situations, for example, in the computation of the cross product of vectors. The cross product of
two vectors produces a vector which is orthogonal to the two vectors. If the cross product is 0, it confirms parallel vectors.
Its magnitude produces the area of the parallelogram have the two vectors as adjacent sides. The magnitude of the cross
product of two vectors divided by the product of their magnitudes produces the sine of the angle between the two vectors.
The theory of determinants is rather attractive and deserves study on its own merits.

If a matrix is an nth-order matrix (n rows and n columns) its determinant is an nth-order determinant.

e The value of a second-order determinant is given by:;ll Sl = ab, - ba,.
2 2

e For a 3"-order matrix, the process is similar, but more detailed:

& b ¢
Method 1: a, b, c,| =ab,c, + abc, + ab,c - ab,c, — abc, — abc,
aﬁ b3 C3
ot - - -
a8 b, G a b
a5 by e ey b,

= a1(b203 - b3C2) - bl(a2C3 - a3c2) + G (a2b3 _aabz)
e Another way to compute this determinant is by minors and cofactors. Block out the row and column of cofactor
a, and multiply a, by its 2" second order determinant. Do the same with the cofactors b, and c,. The cofactor is
also multiplied by

(—1)I+j where i is the row of the cofactor, and j is the column of it.
al bl Cl

CZ

CB

b, ¢ a ¢ a, b + - +
a2 b2 — al 2 2 _ bl 2 2 + Cl 2 2
b, «c, a, ¢, a, b, - + -
a, b,
+ - +
= a1(b203 - bscz) - bl(azcs - aacz) + Cl(azb3 _aabz)
EXAMPLE 1: Find the value of the determinant:
3 2 7
Method 1: -1 5 3| =35(6) +2:3:2 + 7-(-1)(-3)- 2:5-7 —(—3)-3-3—(—6)(—1)-2
2 -3 -6
=-90+12+21-70+27 -12 = -112
3 2 7
5 3 -1 3 -1 3
Method 2: -1 5 3| = 3- - 2 7-
-3 -6 2 -6 2 -3
2 -3 -6

= 3-(-30+9) — 2:(6-6) + 7-(3-10) = 3(-21) + 0 + 7(-7) = —63-49 = —112



Cramer’s Rule is rarely taught in Algebra 2 and Pre-Calculus courses now, but using determinants and the process of
expanding my minors to solve systems of equations is easy, and it will spark a procedural memory in later when these
students work with the cross product, partial derivatives, gradients, del operators and Jacobians.

EXAMPLE 2: Solve the system using Cramer’s Rule

2Xx -3y +4z =1
X +6z =0
3X — 2y =5

| D| is the determinant of the coefficient matrix.
| D, | is the determinant of the matrix with the constant column replacing the coefficients of x.
‘ D, ‘ is the determinant of the matrix with the constant column replacing the coefficients of y.

| D, | is the determinant of the matrix with the constant column replacing the coefficients of z.

The variables are found by these ratios: x = M y = M 7= |DZ|
Dl Dl Dl
-3 4 1 -3 4
ID| =1 0 6 =-38 ID,|=0 0 6 =-78
-2 0 5 20
2 1 4 -3 1
Dy =t 0 6 =-22 |D,|=1 0 0 =13
350 -2 5
bl -1 3 o I ,_Ibf_13 1
D] -38 19 y_|D|_—38_19 D] -38 38

Considering the messy solutions to this system of equations, this is by far an easier way to solve the system rather than
other methods such as substitution, Gaussian elimination, or inverses and matrix equations. And teaching this simple
method will make the process of working with vectors easier as students continue in their mathematical skills and
analysis.



NAME

PROJECT: VOLUMES BY SLICING
(Created by Wanda Savage)

We have just completed the numerical computation of the volume of solids with a known cross-section. Your assignment is
to make a model of one. You may consult the examples in your notes and on p. 418-419 for further clarification of this
assignment.

You have been assighed PROBLEM # . This sheet must accompany your project.

Point distribution will be allotted as follows. This project will be counted as a test grade. It will be due
(Date) . The solid must be on a base which is no larger than 6”x6”. Your solid must have at least 20 cross-
sections. You must also completely and correctly work out the numerical volume of your solid (That is, you
must set up the integral correctly and work it out thoroughly).

PTS POINTS RECEIVED
ORIGINALITY: 15 pts.
MATERIALS 5
PRESENTATION 10
APPEARANCE: 50 pts.
BASE of Solid: 10 pts.
Accurate Shape of Base 5
Correct scale marked 5
CROSS-SECTIONS: 40 PTS
Secure 5
Accurate Shape 15
Visual Color 5
Completeness of the 15
shape of the solid
USEFULNESS AS A MODEL: 15 pts.
EXTENSION: 20 pts.
Overall Construction 10
Correct working of the 10

problem on paper



SOLID VARIETIES
(Created by Wanda Savage)

Cross-Sections are L to the BASES BOUNDED BY:
Type l:
1. y=x+1 and y=x*—1, cross-sections are squares, L. t0 X —axis.

2. y=x+1 and y=x*—1, cross-sections are equilateral triangles, 1. to X —axis. (See front
cover of your book for this formula.)

y=Xx+1 and y = x*—1, cross-sections are rectangles of height 1, 1. to x —axis.
y=Xx+1 and y = x*—1, cross-sections are semi-ellipses of height 2, | to X —axis. (See front

cover of your book for this formula.)

Type lI:
5. y=x% y=0 and x =1, cross-sections are equilateral triangles, L to y — axis.

y=x> y=0 and x =1, cross-sections are squares, L to X — axis..
: : : 1
7. y=x°y=0, and x =1, cross-sections are trapezoids for which h=b, = Ebz where

b,and b, are upper and lower bases, L toy —axis.
8. y=x% y=0, and x =1, cross-sections are semi-circles, L to y —axis.
9. y=x% y=0, and x =1, cross-sections are semi-ellipses whose heights are twice the lengths of their
bases, L t0oy —axis. (See front cover of your book for this formula.)

Type II:
10. x=y* and x =9, cross-sections are squares, L to X —axis.
11. x=y* and x =9, cross-sections are quarter-circles, L to x—axis.
12. x=y* and x =9, cross-sections are rectangles of height 2, L to x —axis.
13. x=y* and x=9, cross-sections are equilateral triangles, 1. to X —axis.
. . . 1 i
14. x=y* and x =9, cross-sections are triangles with h = Zb' 1 to x—axis.
15. x=y* and x =9, cross-sections are trapezoids with lower base in Xy — plane, upper base

=% lower base, h :% lower base, 1. to x —axis.

16. X = y2 and x =9, cross-sections are semi-circles, L to X —axis.

Type 1V:
17. circle, x* + y2 =4, cross-sections are isosceles triangles with h = b, (triangle base is in the

Xy —plane), L to x—axis.
18. circle, X% + y2 =4, cross-sections are semi-circles, L to x—axis.
19. circle, x* +y? =4, cross-sections are squares, L to X —axis.
20. circle, X% + y2 =4, cross-sections are equilateral triangles, L to x —axis.

21. circle, x? + y2 =4, cross-sections are isosceles right triangles, (right angle formed at the XY — plane),
1 to x—axis.



Type V:
22. x=1Yy* and x =3-2y?, cross-sections are rectangles of height 2, 1 to x —axis.

23. x=Yy* and x =3-2y?, cross-sections are equilateral triangles, L. to X —axis.

24. x=y* and x =3-2y?, cross-sections are isosceles right triangles, (hypotenuse in Xy — plane),
1 to x—axis.

Type VI:
25. y=x and y2 = X, cross-sections are semi-circles, L to x—axis.

26. y=x and y= X2, cross-sections are semi-circles, 1 to X —axis.

Type VII:
27. y=4 and y = x*, cross-sections are squares, L to X —axis.

28. y=4 and y= x?, cross-sections are isosceles right triangles, (rightangleat y = 4),
1 to x—axis.

29. y=4 and y= X7, cross-sections are isosceles right triangles, (right angle at y= x%),
1 to x—axis.

Type VIII: (Varied functions)

T T . .
30. one arch of y =cosX, -E <X< E and the X —axis, cross-sections are squares,

1 to x—axis.
31. y2 =4x and x =4, cross-sections are semi-circles, 1 toy—axis.

32. y=1-x* and y=1-x", cross-sections are squares, L to x —axis.
33. X2 = 18y and y =2, cross-sections are squares, | toy —axis.



How Sweet It Is!!!]
Finding volumes of solids by revolution
(Created by Dixie Ross)

1. Rotate the region enclosed by y=+/sinx and y=0 on the interval [0, 7] about the x-axis.
Identify the shape of the solid formed and determine its volume.

2. Rotate the region enclosed by y=x?, y=0 and x=2 about the x-axis. Identify the shape of the
solid formed and determine its volume.

3. Consider the region enclosed by y :%x—l, x=0, y=0 and y=2 . Identify the shape of the

solid formed when this region is revolved about the x-axis and determine its volume.

4. Consider the region in the first quadrant enclosed by y =4—x?. Identify the shape of the solid
formed when this region is revolved about the x-axis and determine its volume.




5. Consider the region in the first quadrant enclosed by y =4—x?. Identify the shape of the solid
formed when this region is revolved about the y-axis and determine its volume.

6. Rotate the region enclosed by y =4—x? and the x-axis about the x-axis. Identify the shape of the
solid formed when this region is revolved about the x-axis and determine its volume.

7. Consider the region enclosed by y=x?, y=0 and x=23. Identify the solid formed when this region
is revolved about the line x = 3and determine its volume.




Circuit - Writing and Interpreting Riemann Sums Name

Directions: Beginning in the first cell marked #1, find the requested information. To advance in the circuit, hunt for your
answer and mark that cell #2. Continue working in this manner until you complete the circuit. For all the following problems

use a right hand Riemann sum with equal partitions.

5
1 Ans:f x3 + 1dx
3

4
Find a limit equal ‘cof(x2 + 1)dx.
0

=8 4
Ans: lim In (—k + 1)—
n—-oo n n

k=1

7
Find a limit equal tof (x? — 8)dx.
3

4
—_— Ans:f(xz + 1)dx

2
Find an integral expression equal to:

n 3
] 2 2
lim (— k) +3|—.
n—-oo n n

k=1

2
—  Ans f(x3 + 2)dx
0

Find an integral expression equal to:
n
i 2
lim (— k+ 3) +1
n—oo n
k=1

Copyright © 2016 Mark Kiraly




Circuit - Writing and Interpreting Riemann Sums

Ans: lim

n
4 4
In (—k + 1) (—)
n—-oo n n

k=1

Find an integral expression equal to:

Ans: lim

n—-oo

Find an integral expression equal to:

n
16 4
—k+9 |-
n n
k=1

n n
2 2 2 \? 2
lim (—k+3>+1 -. lim (—k) +3])-
n—oo n n n—oo n n

k=1 k=1
= /16 24 4 = /16 4
- Ans: im (—kz +—k+ 1)— - Ans:  lim (— k? + 1)—
n—co n? n n n—co n? n

k=1 k=1
/2

Find a limit equal to the area shown.
'
1

y=sin (2x)

/6 ™3 ! 2m/3 5m/6

I~

Find a limit equal toJ cos(2x) dx.
0

Copyright © 2016 Mark Kiraly




Circuit - Writing and Interpreting Riemann Sums

n

e Y (s () g
k=1

7
Find a limit equal tof Vix — 3dx.
3

n—-oo
k=

n
4 4
- Ans: lim J—k+2 —
4 n n

Find a limit equal to the area shown.
¥

2
y=In(x+1)

5X

n

s i > (s () 1
k=1

Find an integral expression equal to:

2 2
im " ((26) +2)2.
n—oo n n

5
— Ans: j(x + 1)dx
3

Find an integral expression equal to:
n 2 3
lim (—k + 3) +1
n—-oo n
k=1
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Circuit - Writing and Interpreting Riemann Sums

5
Ans:
f Vx 4+ 1dx
3

Find an integral expression equal to:

(/2 2 2
lim (—k + 2) +1])-.
n—oo n n

2
- Ans:f(x2 + 3)dx
0

Find an integral expression equal to:

n

2 2
lim (—k + 3) +1 |-
k=1 n—oo n n
k=1
5 2
Ans:f [x2 +1dx —_— AnS:f(x?’ + 3) dx
3 0
5 Find a limit equal to the area shown.
Find a limit equal tof In(2x — 1) dx. Y —
1 2 0% =JX_
’
0 1 2 3 4 5 S

Copyright © 2016 Mark Kiraly
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