Geogebra

http://www.geogebra.org/

Derivatives:

Enter you function, the use derivative[f(x)]

You can change your function, add derivative[g(x)].....

Plotting polar:

Rose:

```
Curve[2 \cos(3 t) \cos(t), 2 \cos(3 t) \sin(t), t, 0, 6.28]
```

Now, put point A on the curve where θ =0 and point B on the origin.

Create a segment AB (segment [A, B])and choose to "show trace"

GeoGebra - rose geb		
File Edit View Options Tools Window	Help	
	Move Drag or select objects (Esc)	<u></u>
 □ Free Objects □ Dependent Objects □ ∅ A = (1.61, 0.33) □ ∅ B = (0, -0) □ ∅ a(t) = (2 cos(3 t) cos(t), 2 cos(3 t) sin(t) 	6- 5-	
u	4-	
	3 -	
		5 6 7 8
< »	-3 -	
🕡 Input:	2	🖌 α 🖌 Command 🖌

Taylor Polynomials:

TaylorPolynomial[<function>, <x-value>, <degree>]

Create a slider with min = 0, max = (whatever) and increment = 1. Use that for your degree. Graph your function you are approximating in one color and the Taylor Polynomial in another.

Cool sites:

http://math247.pbworks.com/Calculus+with+GeoGebra

http://www.rbuhsd.k12.ca.us/~mfox/calcweb/CalcGeogebra.html

http://www.mnwest.edu/fileadmin/static/website/dmatthews/Geogebra/Geoge braAppletIndexB.htm