AP Calculus Mock Exam

AB 1

The continuous function f has domain $-2 \leq x \leq 9$. The graph of f, consisting of three line segments and two quarter circles, is shown in the figure.

Let g be the function defined by $g(x)=\int_{0}^{x} f(t) d t$ for $-2 \leq x \leq 9$.
(a) Find the x-coordinate of each critical point of g on the interval $-2 \leq x \leq 9$.
(b) Classify each critical point from part (a) as the location of a relative minimum, a relative maximum, or neither for g. Justify your answers.
(c) For $-2 \leq x \leq 9$, on what open intervals is g increasing and concave down? Give a reason for your answer.
(d) Find the value of $g(-1)$. Show the computations that lead to your answer.
(e) Find the value of $g(2)$. Show the computations that lead to your answer.
(f) Find the absolute maximum value of g over the interval $-2 \leq x \leq 5$.
(g) Find the value of $g^{\prime \prime}(6)$, or explain why it does not exist.
(h) Must there exist a value of d, for $0<d<2$, such that $g^{\prime}(d)$ is equal to the average rate of change of g over the interval $0 \leq x \leq 2$? Justify your answer.
(i) Find $\lim _{x \rightarrow 0} \frac{3 x+g(x)}{\sin x}$. Show the computations that lead to your answer.
(j) The function h is defined by $h(x)=x \cdot g\left(x^{2}\right)$. Find $h^{\prime}(\sqrt{2})$. Show the computations that lead to your answer.

Solution
Scoring
(a) $g^{\prime}(x)=f(x)=0 \Rightarrow x=-1,2,7$

1: answer
$(1: x=-1$ relative maximum with justification
3: $\{1: x=2$ relative minimum with justification
1: $x=7$ neither with justification

At $x=7, g$ has neither because $g^{\prime}(x)=f(x)$ does not change sign there.
(c) g is increasing where $g^{\prime}=f$ is positive. g is concave down where $g^{\prime}=f$ is decreasing.
$2:\left\{\begin{array}{l}1: \text { answer } \\ 1: \text { reason }\end{array}\right.$
g is increasing and concave down on the intervals $(-2,-1)$ and $(5,7)$.
(d) $g(-1)=\int_{0}^{-1} f(t) d t$

1: answer

$$
=-\int_{-1}^{0} f(t) d t=-\left(-\frac{1}{2}(1)(2)\right)=1
$$

(e) $g(2)=\int_{0}^{2} f(t) d t$

$$
=-\left(2 \cdot 2-\frac{1}{4} \cdot \pi \cdot 2^{2}\right)=-(4-\pi)
$$

$2:\left\{\begin{array}{l}1: \text { area of quarter circle } \\ 1: \text { answer }\end{array}\right.$
(f) The absolute maximum value occurs at an endpoint of the interval or a critical point.
Consider a table of values.

x	$g(x)$
-2	0
-1	1
2	$\pi-4$
5	$\pi-4+\frac{1}{4} \pi 3^{2}=\frac{13}{4} \pi-4$

The absolute maximum value of g is $\frac{13}{4} \pi-4$.
(g) $g^{\prime \prime}(6)=\frac{3-0}{5-7}=-\frac{3}{2}$

1: answer
(h) $g^{\prime}=f \Rightarrow g$ is differentiable on $0<x<2 \Rightarrow g$ is continuous on $0 \leq x \leq 2$

Therefore, the Mean Value Theorem can be applied to g on
$2:\left\{\begin{array}{l}1: \text { conditions } \\ 1: \text { conclusion using Mean Value } \\ \text { Theorem }\end{array}\right.$ the interval $0 \leq x \leq 2$ to guarantee that there exists a value of d, for $0<d<2$, such that $g^{\prime}(d)$ equals the average rate of change of g over the interval $0 \leq x \leq 2$.
(i) $\lim _{x \rightarrow 0}(3 x+g(x))=0$
$\lim _{x \rightarrow 0} \sin x=0$
$3:\left\{\begin{array}{l}1: \text { conditions for L'Hospital's Rule } \\ 1: \text { applies L'Hospital's Rule } \\ 1: \text { answer }\end{array}\right.$
Therefore the limit $\lim _{x \rightarrow 0} \frac{3 x+g(x)}{\sin x}$ is in the indeterminate form $\frac{0}{0}$ and L'Hospital's Rule can be applied.
$\lim _{x \rightarrow 0} \frac{3 x+g(x)}{\sin x}=\lim _{x \rightarrow 0} \frac{3+g^{\prime}(x)}{\cos x}=\frac{3+g^{\prime}(0)}{\cos 0}$

$$
=\frac{3+f(0)}{\cos 0}=\frac{3+-2}{1}=1
$$

(j) $h^{\prime}(x)=1 \cdot g\left(x^{2}\right)+x \cdot g^{\prime}\left(x^{2}\right) \cdot 2 x$

$$
=g\left(x^{2}\right)+2 x^{2} f\left(x^{2}\right)
$$

$$
\begin{aligned}
h^{\prime}(\sqrt{2}) & =g(2)+2 \cdot 2 \cdot f(2) \\
& =(\pi-4)+4 \cdot 0=\pi-4
\end{aligned}
$$

$3:\left\{\begin{array}{l}1: \text { product rule } \\ 1: \text { chain rule } \\ 1: \text { answer }\end{array}\right.$

