AP Calculus Mock Exam

AB 1

The continuous function f has domain $-2 \le x \le 9$. The graph of f, consisting of three line segments and two quarter circles, is shown in the figure.

Let g be the function defined by $g(x) = \int_0^x f(t) dt$ for $-2 \le x \le 9$.

- (a) Find the *x*-coordinate of each critical point of *g* on the interval $-2 \le x \le 9$.
- (b) Classify each critical point from part (a) as the location of a relative minimum, a relative maximum, or neither for g. Justify your answers.
- (c) For $-2 \le x \le 9$, on what open intervals is g increasing and concave down? Give a reason for your answer.
- (d) Find the value of g(-1). Show the computations that lead to your answer.
- (e) Find the value of g(2). Show the computations that lead to your answer.
- (f) Find the absolute maximum value of g over the interval $-2 \le x \le 5$.
- (g) Find the value of g''(6), or explain why it does not exist.
- (h) Must there exist a value of d, for 0 < d < 2, such that g'(d) is equal to the average rate of change of g over the interval $0 \le x \le 2$? Justify your answer.
- (i) Find $\lim_{x\to 0} \frac{3x + g(x)}{\sin x}$. Show the computations that lead to your answer.
- (j) The function h is defined by $h(x) = x \cdot g(x^2)$. Find $h'(\sqrt{2})$. Show the computations that lead to your answer.

Solution	Scoring
(a) $g'(x) = f(x) = 0 \implies x = -1, 2, 7$	1: answer
 (b) At x = -1, g has a relative maximum because g'(x) = f(x) changes from positive to negative there. At x = 2, g has a relative minimum because g'(x) = f(x) changes from negative to positive there. At x = 7, g has neither because g'(x) = f(x) does not change sign there. 	3: $\begin{cases} 1: x = -1 \text{ relative maximum with} \\ \text{justification} \\ 1: x = 2 \text{ relative minimum with} \\ \text{justification} \\ 1: x = 7 \text{ neither with justification} \end{cases}$
 (c) g is increasing where g' = f is positive. g is concave down where g' = f is decreasing. g is increasing and concave down on the intervals (-2, -1) and (5, 7). 	$2: \begin{cases} 1 : answer \\ 1 : reason \end{cases}$
(d) $g(-1) = \int_0^{-1} f(t) dt$ = $-\int_{-1}^0 f(t) dt = -\left(-\frac{1}{2}(1)(2)\right) = 1$	1 : answer
(e) $g(2) = \int_0^2 f(t) dt$ = $-\left(2 \cdot 2 - \frac{1}{4} \cdot \pi \cdot 2^2\right) = -(4 - \pi)$	2 : $\begin{cases} 1 : \text{ area of quarter circle} \\ 1 : \text{ answer} \end{cases}$
(f) The absolute maximum value occurs at an endpoint of the interval or a critical point. Consider a table of values. $ \frac{x g(x)}{-2 0} $ -1 1 2 $\pi - 4$ 5 $\pi - 4 + \frac{1}{4}\pi 3^2 = \frac{13}{4}\pi - 4$	4: $\begin{cases} 1 : \text{ considers } x = -2 \text{ and } x = 5 \\ 1 : \text{ considers } x = -1 \text{ and } x = 2 \\ 1 : \text{ answer} \\ 1 : \text{ justification} \end{cases}$
The absolute maximum value of g is $\frac{13}{4}\pi - 4$.	

Solution	Scoring
(g) $g''(6) = \frac{3-0}{5-7} = -\frac{3}{2}$	1 : answer
(h) $g' = f \Rightarrow g$ is differentiable on $0 < x < 2 \Rightarrow g$ is continuous on $0 \le x \le 2$ Therefore, the Mean Value Theorem can be applied to g on the interval $0 \le x \le 2$ to guarantee that there exists a value of d, for $0 < d < 2$, such that $g'(d)$ equals the average rate of change of g over the interval $0 \le x \le 2$.	$2: \begin{cases} 1 : \text{ conditions} \\ 1 : \text{ conclusion using Mean Value} \\ \text{ Theorem} \end{cases}$
(i) $\lim_{x \to 0} (3x + g(x)) = 0$ $\lim_{x \to 0} \sin x = 0$ Therefore the limit $\lim_{x \to 0} \frac{3x + g(x)}{\sin x}$ is in the indeterminate form $\frac{0}{0}$ and L'Hospital's Rule can be applied. $\lim_{x \to 0} \frac{3x + g(x)}{\sin x} = \lim_{x \to 0} \frac{3 + g'(x)}{\cos x} = \frac{3 + g'(0)}{\cos 0}$ $= \frac{3 + f(0)}{\cos 0} = \frac{3 + -2}{1} = 1$	3 :
(j) $h'(x) = 1 \cdot g(x^2) + x \cdot g'(x^2) \cdot 2x$ $= g(x^2) + 2x^2 f(x^2)$ $h'(\sqrt{2}) = g(2) + 2 \cdot 2 \cdot f(2)$ $= (\pi - 4) + 4 \cdot 0 = \pi - 4$	$3: \begin{cases} 1 : \text{ product rule} \\ 1 : \text{ chain rule} \\ 1 : \text{ answer} \end{cases}$