AP Calculus Mock Exam

AB 2

t	0	2	6	8	10	12
$y^{\prime}(t)$	4	8	-2	3	-1	-5

The vertical position of a particle moving along the y-axis is modeled by a twice-differentiable function $y(t)$ where t is measured in seconds and $y(t)$ is measured in meters. Selected values of $y^{\prime}(t)$, the derivative of $y(t)$, over the interval $0 \leq t \leq 12$ seconds are shown in the table above. The position of the particle at time $t=12$ is $y(12)=-3$.
(a) Use a locally linear approximation of y at $t=12$ to approximate y (11.8).
(b) Approximate $y^{\prime \prime}(4)$ using the average rate of change of $y^{\prime}(t)$ on the interval $2 \leq t \leq 6$.
(c) Using correct units, explain the meaning of $y^{\prime \prime}(4)$ in the context of the problem.
(d) Find the average value of the acceleration of the particle over the interval $[0,12]$.
(e) Using a midpoint Riemann sum and three subintervals of equal length, approximate $\int_{0}^{12} y^{\prime}(t) d t$.
(f) Using correct units, explain the meaning of $\int_{0}^{12} y^{\prime}(t) d t$ in the context of the problem.
(g) Explain why there must be at least three times t in the interval $0<t<12$ such that $y^{\prime}(t)=0$.
(h) Explain why there must be at least two times t in the interval $0<t<12$ such that $y^{\prime \prime}(t)=0$.

Solution	Scoring
(a) $y^{\prime}(12)=-5$ An equation of the tangent line is $y=(-5)(x-12)-3$ $y(11.8) \approx(-5)(11.8-12)-3=-2$	$2:\left\{\begin{array}{l}1: \text { tangent line equation } \\ 1: \text { approximation }\end{array}\right.$
(b) $y^{\prime \prime}(4) \approx \frac{y^{\prime}(6)-y^{\prime}(2)}{6-2}=\frac{-2-8}{4}=-2.5$	1: approximation
(c) $y^{\prime \prime}(4)$ is the acceleration of the particle in meters per second per second at time $t=4$ seconds.	1: meaning with units
$\text { (d) } \begin{aligned} \frac{1}{12} \int_{0}^{12} y^{\prime \prime}(t) d t & =\frac{1}{12}\left[y^{\prime}(t)\right]_{0}^{12} \\ & =\frac{1}{12}\left[y^{\prime}(12)-y^{\prime}(0)\right] \\ & =\frac{1}{12}[-5-4]=-\frac{3}{4} \end{aligned}$	3: $\left\{\begin{array}{l}1: \text { integral } \\ 1: \text { Fundamental Theorem of Calculus } \\ 1: \text { answer }\end{array}\right.$
$\text { (e) } \begin{aligned} \int_{0}^{12} & y^{\prime}(t) d t \\ & \approx y^{\prime}(2) \cdot(4-0)+y^{\prime}(6) \cdot(8-4)+y^{\prime}(10) \cdot(12-8) \\ & =(8)(4)+(-2)(4)+(-1)(4)=20 \end{aligned}$	$2:\left\{\begin{array}{l}1: \text { midpoint Riemann sum } \\ 1: \text { estimate }\end{array}\right.$
(f) $\int_{0}^{12} y^{\prime}(t) d t$ is the vertical displacement (change in position), in meters, of the particle over the time interval $0 \leq t \leq 12$ seconds.	2: $\left\{\begin{array}{l}1: \text { interpretation } \\ 1: \text { units }\end{array}\right.$
(g) y is twice differentiable $\Rightarrow y^{\prime}$ is differentiable $\Rightarrow y^{\prime}$ is continuous over the interval $[0,12]$. $y^{\prime}(t)$ changes from positive to negative on the interval	$2:\left\{\begin{array}{c} 1: \text { conditions } \\ 1: \text { conclusion using the Intermediate } \\ \text { Value Theorem } \end{array}\right.$

$y^{\prime}(t)$ changes from negative to positive on the interval [6, 8].
$y^{\prime}(t)$ changes from positive to negative on the interval [8,10$]$.
By the Intermediate Value Theorem, there must be times a, b, and c, such that $2<a<6<b<8<c<10$, and $y^{\prime}(a)=y^{\prime}(b)=y^{\prime}(c)=0$

Solution
Scoring
(h) y is twice differentiable $\Rightarrow y^{\prime}$ is differentiable $\Rightarrow y^{\prime}$ is continuous over the interval $[0,12]$.

From part (g): there are times $t=a, t=b$, and $t=c$ such that $0<a<b<c<12$ and
$y^{\prime}(a)=y^{\prime}(b)=y^{\prime}(c)=0$.
$\frac{y^{\prime}(b)-y^{\prime}(a)}{b-a}=0 \quad$ and $\quad \frac{y^{\prime}(c)-y^{\prime}(b)}{c-b}=0$
By the Mean Value Theorem (or Rolle's Theorem) there must be a time $t=t_{1}$ such that $a<t_{1}<b$ and $y^{\prime \prime}\left(t_{1}\right)=0$ and a time $t=t_{2}$ such that $b<t_{2}<c$ and $y^{\prime \prime}\left(t_{2}\right)=0$

2: $\left\{\begin{array}{c}1: \text { conditions } \\ 1: \text { conclusion using the Mean Value } \\ \text { Theorem }\end{array}\right.$

