Differential Equation:

An increasing function f satisfies the differential equation $\frac{dy}{dx} = \frac{1}{25}(y - 300)$ with initial condition f(0) = 1400.

- a) Use the line tangent to the graph of f(x) at x = 0 to approximate the value of f(x) at x = 1/4.
- b) Find $\frac{d^2y}{dx^2}$ in terms of y. Use $\frac{d^2y}{dx^2}$ to determine whether your answer in part a is an underestimate or overestimate of $f\left(\frac{1}{4}\right)$.
- c) Find the particular solution y = f(x) to the differential equation $\frac{dy}{dx} = \frac{1}{25}(y 300)$ with initial condition f(0) = 1400.