
AP Calculus Summer Institute 2003,   jt sutcliffe 1 

�

�� �� ����� �� 	�
 ����
 ���� � �� � � ��� ��������� � �
�

 

 
A function  f  is said to be  linear over an interval  if the difference quotient 
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is constant over that interval.  Although few functions (other than linear functions) 
are linear over an interval, all functions that are differentiable at some point 
where x =c are well-modeled by a unique tangent line in a neighborhood of  c 
and are thus considered locally linear.  Local linearity is an extremely powerful 
and fertile concept. 
 
Most students feel comfortable finding or identifying the slope of a linear 
function.  Most students understand that a linear function has a constant slope.  
Our goal should be to build on this knowledge and to help students understand 
that most of the functions they will encounter are "nearly linear" over very small 
intervals; that is most functions are locally linear.  Thus, when we "zoom in" on a 
point on the graph of a function, we are very likely to "see" what appears to be a 
straight line.  Even more important, we want them to understand the powerful 
implications of this fact! 
 

The Derivative 
 
If shown the following graph and asked to write the rule, most students will write 
f(x) = x.  This shows some good understanding, but not enough skepticism. 
 

 
 
If the viewing window  [-.29,.29] x [-.19,.19] were known, some students might 
actually question whether enough is known to conjecture about the function 
presented. 
 
In the viewing window [-4,4] x [-2,2], a very different graph is observed: 
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As teachers, we understand that the first window gets at the idea of local linearity 
(in the neighborhood of x = 0) of the differentiable function we see in the second 
window.  In fact, the two windows are also supportive of an important limit result:  

lim
sin

x

x
x→

=
0

1!  Our ultimate goal, however, is to have students come upon at 

least an intuitive understanding of the formal definition of the derivative of a 
function f for themselves. They should be able to say "of course" rather than 
question "What IS that?" when presented with that formal definition.  It is 
technology that makes this approach possible, and that helps students 
understand the concept of derivative rather than merely memorizing some 
obscure (to them) notation. 
 

Technology to the Rescue: 
Discovering local linearity of common functions 

 
Start with a simple non-linear function, say ( ) 2f x x= .  Select an integer x-value 
and have students “zoom-in” on that point on the graph until they “see” a line in 
their viewing window.  Ask them to use some method to estimate the slope of the 
“line” and be ready to describe their process.  Most will pick two nearby points 
and use the slope formula.  If they have done as instructed, they should all be 
finding a slope value very nearly the same.  If not, ask them to work in small 
groups until everyone has agreed on some common reasonable estimate.  This 
will allow them to check their method and become comfortable with the 
technology. 
 
Next, assign pairs of students their own, personal x-coordinate.  In fact, if the 
class is small, you might assign two or more x-coordinates to each pair.  Be sure 
the assign both positive and negative x-coordinates within an interval, say [-4,4].  
Most of the assigned values will be given in tenths.  Make a table of results 
(either on the board or using the statistics capabilities of your overhead 
calculator).  The class should discover on their own that there appears to be a 
predictable relationship between the x-coordinate and the resulting slope.  In 
fact, they are likely to make a conjecture about the general derivative function 
without even realizing what they are doing. 
 
This conjecture can be confirmed using the difference quotient and an intuitive 
idea of limit as follows:  If a student group was assigned the x-value of a , then 
they would have predicted the slope of a line containing the point ( )2,a a .  When 

they zoomed in, a nearby coordinate might have been (x, x2).  Thus, their 

predicted slope would have been 
2 2x a
x a

−
−

 which can be easily simplified to 

,x a x a+ ≠ .  If x is “very close” to a  in value, then the predicted slope should 
have almost 2a ! 
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Linear Approximation  
 
In the Pre-technological Age, linear approximation was a useful evaluation tool.  
To students today, it may seem like a historic lodestone around their neck.  They 
can just imagine a teacher thinking, "I had to do this, so you will too!"  This topic 
should be presented as a first (and perhaps primitive step) toward what we know 
as Taylor Polynomials.  In fact, many of us may decide to acquaint our AB as 
well as BC students with the idea of quadratic or cubic approximations as well.  
Whether we do so or not, the notion of using lines to model the behavior of a 
function in a small neighborhood of some domain value at which the function is 
differentiable, should be clear to those students who have developed the 
concept of local linearity.  Within the following actual free response questions, 
we find many applications of local linearity that should “be obvious” to students 
who truly understand the derivative of a function at a particular point. 
 
1998 AB4 
 
Let  f  be a function with   f ( )1 4=  such that for all points  x y,a f on the graph 

of  f   the slope is given by  
3 1

2

2x
y
+

. 

(a) Find the slope of the graph of  f  at the point where x = 1. 
(b) Write an equation for the line tangent to the graph of f  at x = 1 and 

use it to approximate f 12.a f. 
(c) Find f xaf by solving the separable differential equation 

dy
dx

x
y

= +3 1
2

2

 with 

the initial condition f ( )1 4= . 

(d) Use your solution from part (c) to find f 12.a f. 
 

 
 

Instantaneous Rate of Change 
 
The new course description includes "instantaneous rate of change as the limit 
of average rate of change.”  Many students find it helpful to understand 
instantaneous rate as what a policeman's radar gun approximates. The radar 
gun actually reads two positions of the vehicle over an extremely small interval of 
time and generates the average rate of change on that tiny interval of time.  Thus 
local linearity once again comes to the rescue and allows us to model the 
situation in such a way as to help us (and the policeman) see a constant rate 
where there may be none.  The definition of instantaneous rate of change 
becomes obvious. 
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1998 - AB 3 

 
 
The graph of the velocity v taf, in ft sec , of a car traveling on a straight road, for 
0 50� �t , is shown above.  A table of values for v taf, at 5 second intervals of 
time t, is shown to the right of the graph. 
 
(a) During what intervals of time is the acceleration of the car positive?  Give 

a reason for your answer. 
 
(b) Find the average acceleration of the car, in ft sec2 , over the interval 

0 50� �t . 
 
(c) Find one approximation for the acceleration of the car, in ft sec2 , at 

t �40.  Show the computations you used to arrive at your answer. 
 

(e) Approximate v t dtaf
0

50z  with a Riemann sum, using the midpoints of five 

subintervals of equal length.  Using correct units, explain the meaning of this 
integral. 
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Differential Equations and Slope Fields 
 
 
The AB and BC syllabi now include finding solutions of variable separable 
differential equations, and we will come back to this topic later.  Effective with the 
2004 Examinations, the topic of slope fields (now only in the BC syllabus) will 
become a part of the AB syllabus.  We can begin to set the stage for a more 
thorough look at slope fields and differential equations early in the year. 
 
 
A Slope field (sometimes called a directional field) is used to give us insight into 
the graphical behavior of a function by looking at its rate of change (derivative) 

function.  For example, consider the differential equation given by 2
dy

x
dx

= .  That 

is, for some function ( )y f x= , y is changing (with respect to x) at a rate that is 
directly proportional to x itself, and the constant of proportionality is 2. Suppose 

we know that ( )1 4f = .  We could use the fact that for ( )y f x= , 2
dy

x
dx

=  to find 

that the slope of f  at x = 1 is 2.  We could then write the equation for the line 
tangent to the graph of f  at x = 1 as ( )4 2 1y x− = − .   
In fact, we could graph a small piece of the line tangent to f  at (1,4) and “see” 
the behavior of f  near this point. 
 
 
 
 

 
 
 
 
Of course, we know that f  is not linear because its rate of change function is not 
constant, but we get a glimpse of f  based on local linearity.  Given ONLY the 

differential equation 2
dy

x
dx

= , we do not know particular values of f , but we can 

“see” the behavior of the graph by creating an entire slope field .   
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First, complete the table below for this differential equation. 
 

x 
2

dy
x

dx
=  

-3  
-2  
-1  
0  
1  
2  
3  

 
 
Next, transfer the information above to the grid below showing little portions of 
the tangent line at each of the indicated points. After doing so, can you begin the 

get a sense of the family of functions ( )y f x=  whose derivative is 2
dy

x
dx

= ? 

 
 
 

 
 
 
 
We will return to the exploration of slope fields later, but for now, notice that here 
is just one more powerful application of local linearity! 
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Definitive?   Definitions 
 
 
Definition:  Let a function f  be defined on some interval I.  We say 
that f is increasing on I provided that for all 1 2,x x I∈ ,  if  1 2x x<  , 

then ( ) ( )1 2f x f x< . 
 
Properties contributed by Theorems of Calculus: 
 

• If ( ) 0f x′ >  for all x I∈ , then f  is increasing on I. 

Note:  This theorem of calculus does not say that ( ) 0f x′ >  is a requirement for f  to be 

increasing on I.  The theorem only speaks to what happens if ( ) 0f x′ > .  Another way to 
look at this is that the inverse of a conditional statement is not necessarily true.  
 

• If ( ) 0f x′ >  at each point ( ),a b  and if f  is continuous on [ ],a b  and 

differentiable on ( ),a b , then f  is increasing on [ ],a b . 
 

Clarifying Examples: 
 

1. Given ( ) 3f x x= ;  f  increases on ( ),−∞ ∞  even though ( )0 0f ′ = . 

2. Given ( ) 1
f x

x
= − ;  f  increases on ( ),0−∞ and on ( )0,∞ .   Note: Many 

textbooks/mathematicians say that this function f  “is an increasing function” (meaning 
that f increases on its discrete domain intervals). However, the domain for this function is 
( ),0−∞ �  ( )0,∞ , and f is not increasing on its domain.   

 
3. Given the following function f  

 
 

f  increase on [ ]1,3  even though ( )2f ′  does not exist. 
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4. Given ( ) 2f x x= ;  f  decreases on ( ],0−∞  and f  increases on [ )0,∞ . 

Note:  f  is decreasing at each point of ( ),0−∞  and increasing at each point of ( )0,∞ .  

The function f  is neither increasing nor decreasing at 0x =  because there is no open 
interval contain 0x =  for which ( ) 0f x′ >  for all x in that interval. This points out the 
difference between intervals over which a function increases and points at which a 
function is increasing. 
 

 
Definition:  Let f  be a function that is differentiable on an open 
interval ( ),a b .  We say that the graph of f  is concave up on ( ),a b  

if f ′  is increasing on ( ),a b . 
 
Properties contributed by Theorems of Calculus: 
 

• If ( ) 0f x′′ >  for all ( ),x a b∈ , then the graph of f  is concave up on ( ),a b . 
 
• If ( ) 0f c′ =  and if ( ) 0f c′′ > , then there is a local minimum at x c= .  Note: 

This is often referred to as the Second derivative Test for Local Extrema. 
 
Note: Based upon the definition above, it is correct to say that “ f  is concave up on any open 
interval over which ( ) 0f x′′ >  for all x belonging to that interval”, but it is not correct to say that 

that “ f  is concave up only on an open interval over which   for all x belonging to that interval”. 
 
Clarifying Examples Based Upon the Definition Above: 
 

1. Given ( ) 4f x x= ;  f is concave up on ( ),−∞ ∞  even though ( )0 0f ′′ = .  This 

is true because ( ) 34f x x′ =  and thus f ′  is increasing on ( ),−∞ ∞ . 
 
2. Given ( ) 3f x x= ; f is concave up on ( )0,∞  and concave down on ( ),0−∞ .  

The endpoints at 0x =  are not included because the definition addresses 
concavity only on an open interval. 

 
 
3. Given ( ) 2 3f x x= − ; f is concave up on ( )0,∞  and concave up on ( ),0−∞ .  

It is not concave up on ( ),−∞ ∞  because f  is not differentiable at 0x = . 
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Definition One:  A point of inflection is a point at which the graph of 
f  is continuous and at which f ′′  changes sign. 
 
Definition Two: A point of inflection is a point at which the graph of 
f  has a tangent line and at which f ′′  changes sign. 
 
Note:  Mathematicians choose to disagree as to whether a tangent line is required or not. 
 
 
Clarifying Examples: 
 

1. Given ( ) 1 3f x x= ;  the graph of f has a point of inflection at (0,0) by either 
definition.  Although f ′  is not defined at 0x = , there is a best linear model 
(a.k.a. tangent line) at this point – the vertical line 0x = . 

 

2. Given ( ) ( )
( )

2

2

1 2, for 2

1 4, for 2

x x
f x

x x

� − + ≤�= �
− − + >��

;  the graph of f has a point of 

inflection at (2,3) by Definition One because the graph of f is continuous 
and changes concavity there.  However, the graph of f does not have a 
point of inflection at (2,3) by Definition Two because the graph of f has a 
cusp at (2,3) and thus does not have a tangent line at that point. 

 
   
3. Given ( ) 4f x x= ;  the graph of f does not have a point of inflection at (0,0) 

by either definition.  Although ( )0 0f ′′ = , f ′′  does not have a change of 
sign around the origin. 

 
 

What Does a Respected Mathematics Dictionary Say? 
 
Mathematical Dictionary, 5th Edition by James and James provides the following 
as definitions. 
 

Increasing Function:  If a function f is differentiable on an open interval I, 
then the function is increasing on I if the derivative is non-negative 
throughout I and not identically zero in any interval of I. 
 
Note:  This is sufficient, but not necessary (see example 3 in the increasing function 
discussion.) 

 
 

Concave Up:  A curve is concave toward a line if every segment of the arc 
cut off by a chord lies in the chord or on the opposite side of the chord 
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from the line.  If the line is horizontal such that the curve lies below it and 
is concave toward it, the curve is said to be concave up. 
 
Note:  If you think this is tough to understand (much less, apply), you’re not alone.  It 
might be paraphrased to say that the graph of a function is concave up on an interval 

( ),a b  if the graph always lies below a segment joining any two points of the graph on 

that interval.  This would still be a horrendous definition to apply. 
 
 

What Do Some Textbooks Use as Definitions? 
 
Calculus: Graphical Numerical, Algebraic by Finney, Demana, Waits, 
Kennedy  1999 says 

Increasing Function: Let f be a function defined on an interval I.  
Then f increases on I if, for any two points 1x  and 2x  in I, 1 2x x<  

� ( ) ( )1 2f x f x< . 
Concave Up: The graph of a differentiable function ( )y f x=  is 
concave up on an interval I if y ′  is increasing on I. 
Point of Inflection:  A point where the graph of a function has a 
tangent line and where the concavity changes is a point of 
inflection. 
 

Calculus, Single Variable , 2nd ed.  by Hughes Hallett, Gleason, et al. 1992 
says 

Increasing Function:  A function f is increasing if the values of ( )f x  
increase as x increases. 
Concave Up:  If ( )f x′′ >0 on an interval, then f ′  is increasing, so 
the graph of f  is concave up there. 
Inflection Point:  A point at which the function changes concavity is 
called a point of inflection. 
 

Calculus 5th ed.by Larson, Hostetler, Evans says 
Increasing Function: A function f is increasing on an interval if for 
any two numbers 1x  and 2x  in the interval, 1 2x x<  implies 

( ) ( )1 2f x f x< . 
Concave Up: Let f be differentiable on an open interval, I.  The 
graph of f is concave upward on I if f ′  is increasing on the interval. 
Point of Inflection: If the concavity of f changes at a point for which 
a tangent line to the graph exists, then the point is a point of 
inflection.  
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Calculus 4th ed. by Stewart 1999 says 
Increasing Function:  A function is called increasing on an interval I 
if ( ) ( )1 2f x f x<  whenever 1 2x x<  in I. 
Concave Up: If the graph of f lies above all of its tangents on an 
interval I, then it is called concave upward on I. 
Point of Inflection: A point P on a curve is called an inflection point 
if the curve changes concavity at P. 
 

Calculus 5th ed by Anton 1995 says 
Increasing Function: Let f be defined on an interval, and let x1 and 
x2 denote points in that interval. The function f is increasing on the 
interval if ( ) ( )1 2f x f x<  whenever 1 2x x< . 
Concave Up:  Let f be differentiable on an interval.  The function f 
is called concave up on the interval if f ′  is increasing on the 
interval 
Point of Inflection:  If f is continuous on an open interval containing 
xo, and if f changes direction of its concavity at xo, then the point 

( )( ),o ox f x  on the graph is called an inflection point of f. 
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In the Age of Computer programs such as Maple and Derive , Hewlett Packard’s 
and TI-89’s,  and other high power technology, should we require our students to 
know and to be able to apply the rules of differentiation?  Most of us would really 
like to answer “yes” but is there just cause to do so (not just the old “we had to 
learn the rules therefore so do you” response?) 
 
 

Ties that Bind (Local Linearity Revisited) 
 
A function that is differentiable at x a=  possesses a unique best linear model 
(known as the tangent line) at that point.  This property prompts an 
understanding of the “logic” behind many of our rules of differentiation.  
 
 
I .  Consider two functions, g  and h , that are differentiable at x a= .  Let 
f x g x h xbg bg bg= + .  What does local linearity at x a=  contribute to our 

understanding about why it is that ′ = ′ + ′f a g a h abg bg bg? 
 
 
II.  Consider a function g  that is differentiable at x a= . Let f x k g xbg bg= ⋅  where 
k  is a non-zero constant. What does local linearity at x a=  contribute to our 
understanding about why it is that ′ = ⋅ ′f a k g abg bg? 
 
 
III. Consider two functions, g  and h , that are differentiable at x a= . Let 
f x g x h xbg bgbg= ⋅ . What does local linearity at x a=  contribute to our 

understanding about why it is that ′ ≠ ′ ⋅ ′f a g a h abg bg bg?  Is there anything that 
local linearity or previous mathematics contributes to our understanding about 
why it is that ′ = ⋅ ′ + ′ ⋅f a g a h a g a h abg bg bg bgbg? 
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The Chain Rule  
 
Once students have learned how to differentiate some basic functions, there are 
fun and interesting ways for them to “discover” the Chain Rule.  The following are 
several good functions with which to start the exploration: 
 
(1) f x xbgb g= −2 6 2  
 
(2) f x xbg b g= sin 2  
 
 
(3) f x xbgb g= −6 3 3  
 
(4) f x xbg bg= cos 3  
 
 

(5) f x xbgc h= −2 2
1  

 
 
 

A step toward confirming conjectures that arise from 
exploration of the Chain Rule 

 
 
 
Consider two functions, g  and h , that are differentiable at x a= .  Let 
f x g h xbg bgc h= .  What does local linearity at x a=  contribute to our understanding 

about why it is that ′ = ′ ⋅ ′f a g h a h abg bgc h bg? 
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Assessing Student Ability to Apply the Rules of Differentiation 
 
1977 AB4, BC2 
 
Let  f and  g and their inverses  f-1 and g-1 be differentiable functions and let the 
values of  f, g, and the derivatives f' and g' at x=1 and x=2 be given by the table 
below. 
 
 

x f(x) g(x) f '(x) g '(x) 
1 3 2 5 4 
2 2 π  6 7 

 
Determine the value of each of the following 
 
(a) The derivative of  f+g  at x=2 
(b)  The derivative of  fg at x=2 
(c)  The derivative of  f/g  at x=2 
(d)  h'(1) where h(x) = f(g(x)) 
(e) The derivative of  g-1 at x=2 
 
 
 
 
A Variation on the Theme 
 
Given that  f and  g are both differentiable functions on the interval (-10,10) and 
specific values of the functions and their derivatives are provided in the table 
below. 
 

x f(x) f ' (x) g(x) g ' (x) 
-1 4 7 -5 2 
3 -2 3 -1 π  

 
(a)  Find p '(3) if  P(x) = f(x) g(x) 
(b)  Find s ' (-1) if  s(x) = f(x) + p(x) 
(c)  Find  q ' (x) if q(x) =  f(x) / g(x) 
(d)  Find  c ' (3) if c(x) = f(g(x)) 
(e)  Find the slope of  g-1 (x) at x = -1 if  g-1 represents the inverse function of g 
(f)  Find  h ' ( 3 ) if  h(x) = f(x2) 
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Questions from other sources: 
  
  
From Calculus 3rd Edition by Stewart 
 
(1) If  g x f b mx f b mxbg b g b g= + + −  where f  is differentiable at b , find ′g 0bg, 
 
(2) Suppose f  is a differentiable function such that 

f f f f1 1 2 2 2 2 3 3bg bg bg bg= = ′ = ′ =, , ,     and .  If g x f x f x f xbg bgc he j= + +3 2 , 

evaluate ′g 1bg. 
 
 
 
From Calculus, 5th Edition by Anton 
 
(3) Given the following table of values, find the requested derivatives. 
 

x f xbg ′f xbg 
2 1 7 
8 5 - 3 

 

(a) ′g 2bg where g x f xbg bg=
3
 

(b) ′h 2bg where h x f xbg ch= 3  

 

(4) Given that ′ =
+

f x
x

x
bg 2 1

 and g x xbg= −3 1 , find ′F xbg if F x f g xbg bgc h=  

(5) Find 
d
dx

f xbg if  
d
dx

f x x3 6bg= . 

 
 
 
From Calculus 3rd Edition by Gillett 
 

(6) Suppose that f x
x
x

bg=
−

2

2 1
. 

(a) Confirm that ′ = − −f x x x xbg b gb g3 2 2 1 3 2  
(b) Why is it incorrect to say that ′ =f 0 0bg ? 
(c) Over what intervals is ′ > ′ = ′ <f x f x f xbg bg bg0 0 0? , ? , ?   

(d) Explain why the range of f  is 4 3 9/ ,∞  
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(7) Let f x xbgb g= −1 3 2  and g x xbgb g= −1 3 2 . 
(a) Use the definition of the derivative to show that ′ =f 1 0bg  and that 

′ =g 1 0bg . 

(b) If h f g= +  and we attempt to evaluate ′ =
−
−→

h
h x h

xx
1

1
11

bg bg bg
lim , what goes 

wrong?  Does ′ = ′ + ′ =h f g1 1 1 0bg bg bg ? 
(This problem illustrates how one-sided derivatives can complicate the theory. Rather than stating 
hypotheses that exclude such cases, we assume that algebraic combinations of functions are 
legitimate only when the domains overlap in nontrivial ways.) 

 
 
 
from Calculus Problems for a New Century, MAA Notes Number 28 
 
(8) Let h x f x g xbg bgbg= ⋅  where the graphs of f  and g  are given below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) Evaluate h h−2 3b g bg and . 
(b) Estimate ′ − ′h h2 3b g bg and  
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(9) Let  h x f g xbg bgc h=  where the graphs of f  and g  are given below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) Is ′h 3bg positive, negative, or zero.  Explain how you know. 
(b) Is ′ −h 1bg positive, negative, or zero.  Explain how you know. 
(c) *** Estimate the value of ′h 1bg 
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Many functions that our students and we encounter can be described by 
explicitly expressing one variable in terms of another.  After exploring the Chain 
Rule, however, it is possible to work with functions that are defined implicitly by a 
relation between x and y.   
 
 
The classic introductory example of implicitly defined functions in most textbooks 

is  x y2 2 25+ = .  This example illustrates a situation where two functions are 
defined by the given relationship – one is the upper branch of a circle and the 
other is the lower branch of that same circle. Let’s consider those two functions, 

namely  f x x1
225af= −  and  f x x2

225af= − − .   

Given that x y2 2 25+ = , it is simple to show that both f1  and f2  satisfy the 

given relationship.  For example,  x f x2
1

2
25+ =afb g  because 

x x2 225 25+ − =d i .   

 
 
The problem, which for the most part is beyond the scope of a first year Calculus 
course, is that not all relations define a function.  In other words, there might not 
be a function that satisfies a given relation.  A simple example of such a relation 

would be x y2 2 1 0+ + = , a relation that is temptingly like the introductory 
relation of most texts.  If one is too hasty, one will apply the procedure used to 
find the derivative of implicitly defined function, and arrive at an “answer”.  
However, by more careful inspection, one will note that the relation defined by 

x y2 2 1 0+ + =  leads to the equivalent statement requiring x y2 2 1+ = − .  Oops!    
 
 
There is, in fact, an Implicit Function Theorem which tells us when a relation in x  
and y  does define a differentiable function of x .  The statement and proof can 
be found in multivariable calculus textbooks, and depends upon an 
understanding of partial derivatives.  Neither the statement nor the proof is within 
the grasp of most first year calculus students.  Thus, the heart of the matter is 
that, as one honest author named Philip Gillett wrote to students, 

“We ask you to wait for a multivariable calculus; meanwhile you will have to trust us not to present any 
foolish problems.” 
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Even though they are more than willing to trust teachers and textbook authors, 
many students find the concept of implicit differentiation perplexing.  In this 
presentation, we will discuss ways to help students achieve greater 
understanding of the concepts that underlie implicit differentiation and attain 
greater confidence in their ability to correctly apply the procedure. 
 
 
If students understand the Chain Rule and implicit differentiation, then they will 
also better understand Related Rates problems. 
 
 
After some introductory discussion and work that will be detailed in the 
presentation, the following concept reinforcing-and-extending problems could be 
addressed. 
 
 
1.  Assuming that the equation  xy y x− − =2 5 0  defines one or more 

differentiable functions of the form y f x= af, write an expression for 
dy
dx

. 

 
 
2. (1992 AB4, BC1)   Consider the curve defined by the equation 

y y x+ = +cos 1 for 0 2≤ ≤y π . 

(a) Find 
dy
dx

 in terms of y . 

(b) Write an equation for each vertical tangent to the graph. 

(c) Find 
d y
dx

2

2  in terms of y . 

 
 
3.  (1980 AB6, BC4)   Let y f x= af be the continuous function that satisfies the 

equation x x y y4 2 2 45 4 0− + =  and whose graph contains the points (2,1) 
and (-2,-2).  Let �  be the line tangent to the graph of f at  x = 2 . 

(a) Find an expression for 
dy
dx

. 

(b) Write an equation for line � . 
(c) Give the coordinates of a point that is on the graph of f  but is not on line 

� . 
(d) Give the coordinates of a point that is on line �  but is not on the graph of 

f . 
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4. An icicle is in the shape of a right circular cone.  At a particular moment in 
time the height is 15 cm and is increasing at the rate of 1 cm/hr, while the 
radius of the base is 2 cm and is decreasing at the rate of 0.1 cm/hr.  Is the 
volume of ice increasing or decreasing at that instant? at what rate? 

 
 
 
5. 1995 AB5/BC3 
 
 

 
As shown in the figure above, water is draining from a conical tank with height 12 
feet and diameter 8 feet into a cylindrical tank that has a base with area 400π  
square feet.  The depth h, in feet, of the water in the conical tank is changing at 
the rate of ( )h − 12  feet per minute.  (The volume V of a cone with radius r and 

height h is V r h= 1
3

2π .) 

(a) Write an expression for the volume of water in the conical tank as a 
function of h. 

(b) At what rate is the volume of water in the conical tank changing when 
h = 3 ?  Indicate units of measure. 

(c) Let y be the depth, in feet, of the water in the cylindrical tank.  At what rate 
is y changing when h = 3 ?  Indicate units of measure. 
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6.  1991 AB6 
 
 

 
 
A tightrope is stretched 30 feet above the ground between the Jay and the Tee 
buildings, which are 50 feet apart.  A tightrope walker, walking at a constant rate 
of 2 feet per second from point A to point B, is illuminated by a spotlight 70 feet 
above point A, as shown in the diagram. 
 

(a) How fast is the shadow of the tightrope walker's feet moving along 
the ground when she is midway between the buildings?  (Indicate 
units of measure.) 

 
(b) How far from point A is the tightrope walker when the shadow of 

her feet reaches the base of the Tee Building?  (Indicate units of 
measure.) 

 
(c) How fast is the shadow of the tightrope walker's feet moving up the 

wall of the Tee building when she is 10 feet from point B ? (Indicate 
units of measure.) 
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In the past, our emphasis with students has been on the process of “finding” 
derivatives.  We drilled our students on the various derivative rules; the rules 
became the focus until we turned to application problems. 
 
In the Age of Reform, however, we realize that we want our students to 
understand the concept of derivative better.  We will hopefully spend less time in 
the future drilling students on rules, and more time on helping students develop 
an understanding of the concept of derivative. 
 
 

Gaining Information about the Slope of a Function 
from the Graph of that Function. 

 
 

 
 
 
 
 
Example 1:  Function  F is defined and continuous on the closed interval [a,g]. 
The graph of  F is shown above.  Use this graph to answer the following 
questions. 
  
(a) Over what intervals is  F  increasing ? 
(b) Over what intervals is   ( )F x′  > 0 ? 

(c) At what x-values is  ( )F x′  = 0 ? 
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Example 2:  
 

 
 
 
The graph of  F ′   , the derivative function for  F,  is sketched above.  ( )F x′ is 
continuous on the interval (a,g).  Use this graph to answer the following 
questions. 
 
(a)  Over what interval(s) is ( )F x′ > 0 ? 
 
(b) Over what interval(s) is F ′ increasing ? 
 
(c) Over what interval(s) is  F  increasing ? 
 
(d) Over what interval(s) is  F ′′  (x) > 0 ? 
 
(e) Over what interval(s) is the graph of  F concave up ? 
 
(f) If it is known that the graph of  F  contains the point  (a,0), sketch a possible 

graph of  F  on the axes below. 
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Example 3:    

 
 
The graph of  F ′′ is sketched on the axes above.  F ′′  is continuous on the 
interval (a,g).  Use this graph to answer the following questions. 
 
(a) Over what interval(s) is F ′′  (x) ≤  0 ? 
 
(b) Over what interval(s) is F ′  increasing? 
 
(c) At what x-values does the graph of F  have inflection points ? 
 
(d) If  F ′ (a) = 2, is  F ′ (c) positive or negative ? Write an argument that supports 

your conclusion. 
 
 
 
Example 4: 

 
 
The graphs of  H, H ’, and H ’’ are sketched on the axes above and G, G’, and G”  
are sketched below. Determine which is which, and clearly explain your 
reasoning. 
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1989 AB5 
 

 
 
 
 

Note: This is the graph of the derivative of f, not the graph of f 

 
The figure above shows the graph of  f ′ ,  the derivative of a function f .  The 
domain of f  is the set of all real numbers  x such that  -10 ≤  x ≤  10. 
 
(a) For what values of  x  does the graph of f  have a horizontal tangent? 
(b)  For what values of x in the interval (-10,10) does f  have a relative 

maximum?  Justify your answer. 
(c) For what values of  x  is the graph of f  concave downward? 
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1985 AB6 
 

 
Note: This is the graph of the derivative of f, not the graph of f 

 
The figure above shows the graph of  f ′ , the derivative of a function f .  The 
domain of the function f  is the set of all  x  such that  - 3 ≤  x ≤  3.   
 
(a) For what values of x, -3 < x < 3,  does  f  have a relative maximum?  A 

relative minimum?  Justify your answer. 
(b) For what values of  x  is the graph of f  concave up ?  Justify your answer. 
(c) Use the information found in parts (a) and (b) and the fact that f ( -3)=0 to 

sketch a possible graph of f . 
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What is so fundamental about the Fundamental Theorem?  To a mathematician, 
the "fundamental theorems" are those that are the foundations for the subject 
being addressed.  This is certainly true for the Fundamental Theorem of 
Arithmetic (which states that every positive integer greater than 1 is either prime 
or can be written as a product of primes in essentially one way)  and the 
Fundamental Theorem of Algebra (which states that every polynomial equation 
of degree  n ≥ 1 with complex coefficients has at least one root, which is a 
complex number.)  For many years before the Fundamental Theorem of 
Calculus was proved, mathematicians worked with derivatives, antiderivatives, 
and sums of products.  After Isaac Barrow discovered and proved the 
Fundamental Theorem of Calculus, both his student, Isaac Newton, and 
Gottfried Leibnitz developed many of the concepts of calculus that we use and 
study today.  The power of the Fundamental Theorem of Calculus is that it (i) 
connects the branches of differentiation and integration, and (ii) provides an 
efficient means of accumulating rates of change.  Let’s discuss possible 
approaches to the development of this theorem in our classrooms that will 
enable our students to both understand and appreciate this most powerful and 
fundamental of theorems. 
 

The Area Approach 
 
This is probably the most frequently seen textbook and classroom development 
of the theory behind the Fundamental Theorem.  Students relate easily to the 
concept of area, to the idea of getting better approximations to area by 
increasing the number of rectangles employed, and the instinctive (and visually 
appealing) sense that using limits will bring us to an "exact area".  Unfortunately, 
this approach can also be misleading.  Since area is of positive magnitude, this 
approach is built upon the given function being positive on the interval described, 
and thus neglects the implications of a function that may not (always) be positive 
on the given interval.  Also, this approach does not help build the critical 
relationship between differentiation and integration except by happenstance.  
 
 

The Distance Approach 
 
Just as the Area Approach is based upon the accumulation of small pieces of 
area, the Distance Approach is based upon the accumulation of small distances. 
The disadvantage of this approach is that it is not as familiar nor as visual for 
students.  The advantage is that is so beautifully shows the integration process 
as one of accumulating rates of change, and thus gives clear evidence of the 
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relationship between differentiation and integration.  It also has the advantage of 
allowing velocity (function) values to be either positive or negative or both.  The 
student can literally "see" the contrast between total distance traveled and 
displacement, a concept which has no parallel in the area approach. 
 
 

A Formal Proof Approach 
 
A fairly formal proof of the Fundamental Theorem is given in many textbooks, 
and is presented in many classrooms.  Since few students are neither 
comfortable with the notation used, nor able to appreciate the theoretical 
development without some concrete work first, to provide the proof as a sole 
means of having students grasp the Fundamental Theorem is futile.  However, in 
the "Age of Reform" (drumroll, please) are we expected to present the proof as 
part of our development?  Do we feel that it is productive, useful, or desirable to 
do so whether or not the Reform movement thinks so?   
 
 
 
Let us summarize our goals: 

• We want students to understand the Fundamental Theorem. 
• We want students to appreciate its power. 
• We want students to see that the Fundamental Theorem explains the 

relationship between the two major themes of calculus:  integration 
and differentiation. 

• We want students to see the Fundamental Theorem as providing a 
powerful tool for accumulating rates of change. 
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A QUESTION OF VELOCITY 
 
Mark Saintly entered a Walk-a-Thon to help raise money for the local Community 
Center.  He started the walk slowly, but gradually picked up some speed since 
there was a bonus $100 contribution made by a local business for any walker 
who completed the 5 mile walk in less than 100 minutes.  The table below shows 
Mark’s speed at various times along the designated route.   
 
 
Time, in minutes, 
since Mark began 
the Walk 
 

 
0 

 
2 

 
4 

 
8 

 
Mark’s speed in miles 
per minute 
 

 
0 

 
.03 

 
.04 

 
.06 

 
 
Let’s assume that Mark never decreased his speed in these first 8 minutes.   
 

1. Use the information in this table to estimate the distance Mark had 
covered in the first 8 minutes.  Provide not only an answer, but an 
rationale for why you feel this might be a reasonable estimate. 

 
Suppose that we had more information about Mark’s speed than was provided in 
the first table.  Below is a more complete table. 
 
 
Time, in minutes, 
since Mark began 
the Walk 
 

 
0 
 

 
1 

 
2 

 
4 

 
6 

 
8 

 
Mark’s speed in 
miles per minute 
 

 
0 

 
.01 

 
.02 

 
.04 

 
.05 

 
.06 

 
2. With the additional information, revise your estimate of the distance Mark 

has covered in the first 8 minutes of the Walk-a-Thon. 
 
 
 
 

3. Based upon your estimate from question 2, what was Mark’s average rate 
for the first 8 minutes? 
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AN  AREA  PROBLEM WITH AN ���� 
 
 
A function, f, given by the rule  f(x) = 96 - 32x is sketched on the axes below. 
 

 
 

(a) Use the CRiemann program to estimate the area of the trapezoidal region 
enclosed by the graph of this function, the X-axis, the Y-axis, and the 
vertical line x = 1. Confirm using geometry. 

(b) Use the CRiemann program to estimate the area of the triangular region 
enclosed by the graph of this function, the X-axis, and the Y-axis. Confirm 
using geometry. 

(c) Find the total area trapped between this function, the X-axis, and the 
vertical lines x = 0 and x = 2.  Explain the discrepancy with your result and 
the result when the Criemann program is applied to the same interval. 
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AP Examination Questions Relating to the Fundamental Theorem 
 
 
1987 BC6 
 
Let  f  be a continuous function with domain  x > 0  and let  F  be the function 

given by  F x f t dt
x

( ) ( )= �
1

 for  x > 0 .  Suppose the  F(ab) = F(a) + F(b)  for all  

a>0 and  b>0  and that  F ' (1) = 3. 
 
(a)  Find  f(1). 
(b)  Prove that  aF ax F x' '( ) ( )  =  for every positive constant  a . 
(c)  Use the results from parts (a) and (b)  to find  f(x).  Justify your answer. 
 
 
1991 BC4 
 

Let  F x t dt
x

( ) = +�
2

1

2

1 . 

 
(a)  Find  F ' (x). 
(b)  Find the domain of  F.   
(c)  Find  lim ( )

x
F x

→1 2
. 

(d)  Find the length of the curve  y = F(x)  for  1 ≤ x ≤ 2. 
 
 
1993 AB Multiple Choice #41 
 
d
dx

u du
x

cos( )2
0

π�  is 

 

(a)  0  (b)  
1

2π
sin x   (c) 

1
2

2
π

πcos( )x  (d) cos( )2πx  

(e) 2 2π πcos( )x  
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There are many functions defined by integrals.  Perhaps the most “famous” 
function of this type from the realm of first year calculus is the natural logarithmic 
function.  In the past, many of us have tended to race past the development of 
functions defined by integrals to get to functions themselves.  In a sense, this is 
like racing to our destination without “stopping to smell (or even see) the roses” 
along the way. 
 
In our haste to get to the skills of finding antiderivatives, to make our students 
competent with logarithmic and exponential functions, and to apply the students’ 
skills to applied problems such as volumes, we have missed some important 
theory and some wonderful explorations.  This presentation hopes to revisit 
familiar topics with some sight-seeing and exploring along the way. 
 
 
 
In the Teacher’s Guide: AP Calculus, the goals of AP Calculus have been listed 
and explained in greater detail.  On page 9, the fourth goal is presented and 
explained: 
 

4. Students should understand the relationship between the derivative 
and the definite integral as expressed in both parts of the Fundamental 
Theorem of Calculus. 

 
The fourth goal is for students to understand the Fundamental Theorem 
of Calculus, which they can really do only after the two previous goals 
have been met.  They should understand “both parts” of the theorem.  
One part validates the use of antiderivatives to evaluate definite integrals, 

that is, � −=b

a
aFbFdxxf )()()( ,  where F  is any antiderivative of  f .  

The other part involves the differentiation of functions defined by definite 

integrals, that is,  )()( xfdttf
dx
d x

a
=� .  Students for whom integration is 

introduced from the outset as “the opposite of differentiation” are 
understandably less than impressed by the profundity of these results. 
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In order to get the most out of our travels, it will be important for students to have 
a good grip on the foundations:  the meaning of the definite integral both as a 
limit of Riemann sums and as the net accumulation of a rate of change, and an 
understanding of the Fundamental Theorem of Calculus.   
 
Let’s address the “part” of the Fundamental Theorem most critical to this topic: 

the part that states  )()( xfdttf
dx
d x

a
=� . 

 
One of the recent changes in the content of AB Calculus is that those students 
are expected to deal with topics at the same depth as their BC Calculus 
counterparts.  Thus, they should be able to apply composition of functions to this 
concept by using the Chain Rule:  that is, 

( )xgxgfdttf
dx
d xg

a
')(

))(()( ⋅=�  

 
We will look at ways of helping our students understand this concept. 
 
 

SAMPLE PROBLEMS: 
 
 
 
Example 1:    

Given function myst such that  dt
t

xmyst
x

�=
1

1
)( .  Describe the graph of myst  as 

completely as possible, giving explanations to support your conclusions. Be sure 
to include a discussion of the domain of this function, intervals over which it 
increases or decreases, and its concavity. 
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Example 2: 
 
1995 AB6 
 
The graph of a differentiable function f  on the closed interval [1,7] is shown. 

Let  71for    )()(
1

≤≤= � xdttfxh
x

. 

 

 
 
 
 
(a) Find  ( )1h  

(b) Find  ( )4'h  
(c) On what interval or intervals is the graph of  h  concave upward. Justify your 

answer. 
(d) Find the value of  x at which h  has its maximum on the closed interval [1,7].  

Justify your answer. 
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Example 3: 
 
1995 BC6 
 
Let  f  be a function whose domain is the closed interval [0,5].  The graph of  f  
is shown below. 
 

 
 

Let   )()(
3

2

0
dttfxh

x

�
+

=  

 
 
(a) Find the domain of h  

(b) Find ( )2'h  
(c) At what  x  is  )(xh  a minimum?  Show the analysis that leads to your 

conclusion. 
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Example 4: 
 

(a) If � −+
=

2

1 11
)(

x

t
dt

xF   , then find  ( )xF ' . 

 
 
 
 
 
 
 
 

(b) If  � +
=

0

)sin( 2
)(

x t
dt

xF  , , then find  ( )xF ' . 

 
 
 
 
 
 
 
 
 

(c) The variables  x  and  y  are related by    . 
41

1

0
2�

+
=

y

t
x    Show that 2

2

dx
yd

  

is proportional to  y  and find the constant of proportionality. 
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Example 5:    [Based on a problem from Calculus Problems for a New Century , 
pg.110] 
 

Let  �=
x

dttfxg
0

)()(   where  f  is graphed below. 

 
 
 
 
(a) Does  g   have any local maxima on (0,10)?  If so, state at what x-values 

they occur and explain your reasoning for choosing these values. 
(b) Must g  have an absolute maximum value on the interval [0,10]? Explain why 

or why not.  If g  must have an absolute maximum value on [0,10], find the x-
value at which it occurs and support your answer with an explanation of your 
reasoning. 

(c) Determine any intervals within (0,10) on which g  will be concave up.  Justify 
your answer. 

(d) Sketch a possible graph of  g . 
(e) **Suppose that it is known that g is an even function with domain [-10,10].  

Determine the intervals over which g must be concave up.  Support your 
answer with work or an explanation that does not rely on the symmetry of the 
graph alone. 
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Example 6: 
 
1997 AB5 

 
 
The graph of a function f  consists of a semicircle and two line segments as 

shown above.  Let g  be the function given by g x f t dt
x

( ) ( )=z
0

. 

(a) Find g( )3 . 
(b) Find all values of x  on the open interval (-2,5) at which g  has a relative 

maximum.  Justify your answer. 
(c) Write an equation for the line tangent to the graph of g  at x=3. 
(d) Find the x-coordinate of each point of inflection of the graph of g  on the 

open interval (-2,5).  Justify your answer. 
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Differential equations are means of describing relationships between rates of 
change and other values.  
 

dy
dx

x
dy
dx

y  
dy
dx

xy= = =3 ;         ;      

 

The above are examples of differential equations relating the rate of change 
dy
dx

 

to  x, to y, or to both.  They are each also of the type known as variable 
separable.   
 
Differential equations are classified by type (ordinary or partial), by order (that of 
the highest order derivative that occurs in a differential equation) and by degree 
(the exponent of the highest  power of the highest order derivative.) For example, 

d y
dx

d y
dx

y
x

ex
3

3

2 2

2

5

2 1
F
HG

I
KJ+FHG

I
KJ+

+
=  is an ordinary differential equation of order three 

and degree two. 
 
. 
� To solve a differential equation means to find a family of functions that satisfies 
the particular differential equation.  For example, show that any member of the 
family  

y A x B x= +cos( ) sin( )  
solves the differential equation 

y y"    =  0+  
 
 

�To solve a differential equation of the form  
dy
dx

f x= ( )  

requires finding a function  F  that whose derivative is  f  . The most general 
solution of the given differential equation is  thereby y = F(x) + C.  For example,  
given 

dy
dx

x= cos( ) , 
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the general solution is  y x c= +sinaf  because cosine is the derivative function 
for sine. 
 
� To find a particular family member of the general solution set of a differential 
equation requires having one or more initial conditions.  For example, if we know 
that 

dy
dx

x y x= = =cos( )   and  that   when  3
2
π

 

then we know (1) y x c= +sinaf   and also that (2)  3
2

= +sin( )
π

C .  Thus  

y x= +sinaf 2   is the unique particular solution for the differential equation 
under the given initial conditions. 
 
�Often, the method of substitution (used implicitly or explicitly) is a necessary  
integration technique enabling us to solve a differential equation using the Chain 
Rule.  For example,  

dy
dx

x x= ⋅cos ( ) sin( )3 2 2  

is really of the form 
dy
du

u u x= − =1
2

23   where  cos( )  

and so its general solution is  y u C= − +1
8

4   or, better yet  

y x C= − +1
8

24cos ( ) . 

 
 

Separation of Variables 
 
Some differential equations take the form 

dy
dx

G x y= ( , )  

where the rate of change depends not only upon x but also upon y.  If this 
differential equation can be written in the form 

dy
dx

g x
h y

= ( )
( )

 

then it can be transformed to 
h y dy g x dx( ) ( )=  

and solved by antidifferentiating both the left-hand member and the right-hand 
member with respect to x.  Looking at the general form of a variable separable 
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differential equation, it appears that one is integrating the left-hand member with 
respect to y and the right-hand member with respect to x;  not so, however. 
 
 
Suppose we can write a differential equation in the form 

)(
)(

yf
xg

dx
dy =  

 
then, we can transform this equation to one of the form 

f y
dy
dx

g x( ) ( )= .  (1) 

 
This leads to 

f y dy g x dx( ) ( )= , 
which is the "classic" variable separable format. 
 
If  y  is a function of x, say y(x), and if G xaf is an antiderivative of g xaf and  
F(y) is an antiderivative of f(y), we can use the Chain Rule to discover that 
d
dx

F y x F y x y x f y
dy
dx

( ( ( ))) ( ( )) ( ) ( )' '= ⋅ =      

If we rewrite equation (1) as  

f y
dy
dx

dx g x dxaf afL
NM

O
QP =            (2)  

then it is clear ???  that the left member is the result of differentiating F yaf with 

respect to x  and that the right member is the result of differentiating G xaf with 
respect to x .  Thus we integrate (both sides of) equation (2) with respect to x  to 
get  F y G x caf af= + . 
 
 
 
 
 
1.  Growth and Decay Problems 
 
 Many quantities are found to increase or decrease (grow or decay) over 
time in direct proportion to the amount of the quantity present.  The resulting 
differential equations is of the form 

dA
dt

kA k=   where    is the constant of proportioanlity.  

A classic example of this type of problem is a "typical" population problem or a 
typical radioactive decay problem.  For example,  
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1987 BC1 
 
At any time t ≥0, in days, the rate of growth of a bacteria population is given by  
y' = ky where  k  is a constant a  y  is the number of bacteria present.  The initial 
population is 1000 and the population triples during the first 5 days. 
 
(a)  Write an expression for  y  at any time t ≥0. 
(b)  By what factor will the population have increased in the first 10 days? 
(c)  At what time  t, in days, will the population have increased by a factor of 6? 
 
 
 
Newton's Law of Cooling(or Heating) 
 
Another classic example is Newton's Law of Cooling (or Heating) which states 
that the rate at which an object cools (or warms) is proportional to the difference 
in temperature between the object and the temperature of the surrounding 
medium.  Newton's Law of Cooling is an enlightening variation on the population 
problem. 
(a)  Derive an equation which expresses the temperature T of a cooling object at 
any time  t  if the temperature of the surrounding medium is Tm  
(b)  Use your results in part (a) to find a solution to the following problem: 
You have just baked a fresh apple pie and removed it from the oven at a 
temperature of 450o F.  You have left it to cool in a room whose temperature is 
maintained at a constant 70o F.  The ideal temperature for serving hot apple pie 
is when the pie has cooled to 100o F. If after half an hour the pie has already 
cooled to 200o F, when is the ideal time to serve to pie? 
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1993 AB6 
 
Let P(t) represent the number of wolves in a population at time  t  years, when  
t ≥0.  The population  P(t)  is increasing at a rate directly proportional to  800 - 
P(t), where the constant of proportionality is  k. 
 
(a)  If P(0) = 500, find P(t)  in terms of  t  and  k. 
(b)  If P(2) = 700, find  k. 
(c)  Find  lim ( )

t
P t

→∞
. 

 
 
 
 
Coasting to a Stop 
 
Consider an object in motion, such as a car, coasting to a stop.  There are 
actually many forces at play in such a context, but if the situation is simplified, it 
might be assumed that the resisting force encountered is proportional to the 
velocity.  [That is, the slower the object moves, the less resistance it encounters.] 
From physics, it is known that Force = mass X acceleration .  It has been 
determined that for a 50-kg ice skater, the constant of proportionality described 
above is about  –2.5 kg/sec. 
(a) How long will it take the skater to coast from 7 m/sec to 1 m/sec ? 
(b) How far will the skater coast before coming to a complete stop? 
 
 
 
 
The Salt Brine Problem 
 
At time t = 0  minutes a tank contains  4 lbs. Of salt dissolved in 100 gallons of 
water.  Brine containing  2 lbs. Of salt per gallon of water is allowed to enter the 
tank at the rate of  5 gal./min.  The mixed solution is at the same time allowed to 
drain from the tank at the same rate.  How much salt is in the tank after  10  
minutes? 
 
 
 
 
 
 
 
 

Logistic Equation Models from Differential Equations 
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A population growing in a confined environment often follows a logistic growth 
curve because the rate of growth of the population depends not only upon the 
existing population but also upon the maximum amount of population the 
confined environment can support. Such functions are interesting to investigate 
graphically.  They come from the solution of a separable differential equation of 

the form    
dP
dt

kP
P
L

= −( )1   with  k and L  constant.  

 
 
1991 BC6 

A certain rumor spreads through the community at the rate ( )yy
dt
dy −= 12 , 

where y is the proportion of the population that has heard the rumor at time t . 
 
(a)  What proportion has heard the rumor when it is spreading fastest? 
(b)  If at time t = 0, ten percent of the people have heard the rumor, find y  as a 

function of time t . 
(c)  At what time t  is the rumor spreading the fastest? 
 
 
Sample Multiple Choice Questions 
 
 
1993 AB33 
 

If  
dy
dx

y= 2 2  and if  y = -1 when  x = 1 , then when  x = 2,  y =  

(a)  -2/3 (b)  -1/3 (c)  0  (d)  1/3 (e)  2/3 
Note: 62% omitted this problem with only 14% making the correct choice of (b). 

 
 
1993 BC13 
 

If 
dy
dx

x y= 2 , then  y  could be 

 

(a)  3ln(x/3)  (b)  e
x3

3 7+   (c)  2
3

3e
x

 (d)  3 2e x  (e)  
x 3

3
1+  

Note:  17% omitted this question.  45% chose the incorrect answer of (b) and 34% chose the correct answer of (c). 
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There are programs for graphing calculators and for computers that will draw 
slope fields for us.  Unfortunately, the resulting “pictures” do not always give an 
accurate sense of the behavior of the function or relation being investigated.  
This is where the “slippery slide” can occur.  The experience we can provide our 
students with a paper and pencil introduction to slope fields is undoubtedly the 
most critical component of the topic at this level.  That is, our goals (I would 
suggest) should be 
 

• to be certain our students  understand the information  a first-order 
differential equation provides. 

• to enable our students to have a real “feel” for the family of solutions to 
differential equations.  

• To help our students focus on the concepts rather than on the 
technique alone. 

 
Pedagogy:  Investigating slope fields 

 
After reflecting on slope as a rate of change and the locally linear behavior of a 
function in neighborhoods of points at which the function is differentiable, ask 
students to discuss the thoughts that come to mind when presented with a 
particular differential equation. For example, what does the following equation 
“mean” to them: 

yx
dx
dy 3=  

 
(Note:  I would intentionally pick a first order differential equation that they are 
not likely to be able to solve at the point you are introducing this topic).  
Gathering thoughts and then using graph paper and pencil to explore slope 
values at particular points might be the next order of business.   
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After one or more examples, I would turn the class loose on trying to similarly 
investigate the following: 
 

yx
dx
dy

x
y

dx
dy

y
x

dx
dy

y
x

dx
dy

y
dx
dy

x
dx
dy
dx
dy

+=

=

=

−=

=

=

= 2

 
 
 
From our graphical display, we might try to make conjectures about a particular 
family that would behave the way the slope field demands, and then check our 
conjecture by substituting appropriate derivatives into the differential equation.  
Hopefully such exploration would reinforce what it means to “solve” a differential 
equation and what a differential equation describes.  Perhaps students will more 
clearly see differential equations not merely as end results of some random 
differentiation but also, and more importantly, as providers of descriptive 
information about the behavior of a family of functions. 
 
Throughout the year, this topic can be revisited at appropriate moments.  For 

example, once students know that )ln(
1

1

xdt
t

x

=� ,  the solution of many of the 

above differential equations can be revisited. 
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Assessment:  Understanding slope fields 
 
The following graphs show slope fields in the particular viewing window provided.  
For each:  

• Propose a family of functions that would solve the differential equation 
reflected by the slope field. Explain as completely as you can why you 
have selected this family. 

• Propose a differential equation whose graph would be the slope field 
shown.  Explain as completely as you can what characteristics of the 
slope field caused you to select this differential equation. 

 
(a)  [-4.7,4.7]  x  [-3.1,3.1]   (b)  [-4.7,4.7]  x  [-3.1,3.1]  

 
 
 
 
(c)  [-4.7,4.7]  x  [-3.1,3.1]   (d)  [-4.7,4.7]  x  [-3.1,3.1] 
        

 
  
 
(e)  [-4.7,4.7]  x  [-3.1,3.1]   (f)  [-4.7,4.7]  x  [-3.1,3.1] 
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Content and Pedagogy:   Euler’s Method 
 
Slope fields are used to see trends in the behavior of solutions to differential 
equations.  Euler’s method is used to find numerical approximations to solutions 
of these differential equations.  That is, if we are given initial conditions that 
apply to the solution of a particular differential equation, we can begin at that 
point in the plane and head off in the direction indicated by the slope field.  At 
some well-chosen point, we make a course correction by re-evaluating the 
direction we should be heading based upon the differential equation and some 
new location.  Theoretically, if the intervals at which we make our course 
corrections are small enough, we should be able to piece together a rough, but 
reasonable, solution.    
 

As a first example, a class might begin with the differential equation yx
dx
dy +=  

and the initial conditions y = 1 when x = 0.  From the differential equation, the 
slope of a line tangent to the solution’s graph has slope 0 + 1 = 1.  Thus, the 
tangent line 1or      )0(11 +=−=− xyxy  models that solution.  We follow 
along that line until we are ready to make a course correction.  Using that model, 
y = 2 when x = 1.  Therefore, at the point (1,2) we might make a change of 
direction, heading off along a line with slope of  1 + 2 = 3.  Thus, the 
line 1-3xyor     )1(32 =−=− xy  becomes our new model.  If we move another 
unit in the x-direction before changing course, we would arrive at the point (2,5).  
Using the differential equation, the predicted slope would be 2 + 5 = 7.  We then 
build a new model, )2(75 −=− xy   and continue along this new path.   
 
What students would hopefully become suspicious about is the fact that we are 
making course corrects every horizontal unit of 1.  This is not exactly a small 
increment!  Someone might suggest a smaller horizontal increment be used to 
correct our course.  The class could explore what happens when  x∆   = 0.5 or 
even  x∆ = 0.1   Approximating the solution at x = 2 is markedly different for 
each choice of  x∆ .  At this time, it might be helpful to have students verify that 

the general solution to this differential equation is  1−−= xCey x   and that the 
initial conditions allow us to determine the specific family member  

12 −−= xey x .  The class can then use this solution to compare 
approximations using Euler’s Method with several step sizes for  x∆ . 
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The three graphs below show the actual particular solution compared with 
models that start with the tangent at (01,) and progress through several course 
changes over the interval [0,2] based on x∆ =1 and then x∆ =0.5. 
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Solutions to Slope Field graphs: 
 

x
y

dx
dy

y
x

dx
dy

xdx
dy

xdx
dy

y
dx
dy

x
dx
dy

=

=

=

+
=

=

=

  )6

  )5

3
1

  )4

1
1

  )3

  )2

  )1

32
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