Are we asking the right questions? CORRECTED VERSION

The twice-differentiable function f(x) has values as given in the table below. f'(x) is increasing on the interval $-3 \le x \le 2$.

x	-3	-2	1	2	5
f(x)	2	3	5	8	2
f'(x)	0	0.3	0.8	4	-3

1. Is there guaranteed to be a value c in the interval 2 < x < 5 such that f(c) = 6? Justify your answer.

2. Is there guaranteed to be a critical point in the interval -3 < x < 5? Justify your answer.

3. Over what interval is there guaranteed to be a value c such that f'(c) = 1?

4. $\frac{f''(5)-f''(2)}{5-2} = -1$, yet there is no value *c* in the interval 2 < x < 5 such that f'''(c) = -1. What does this tell you about f''(x)?

5. Write the equation of the line tangent to y = f(x) at x = 1 and use it to approximate f(1, 2). Is your approximation less than or greater than the actual value of f(1, 2)? Explain.

6. If
$$g(x) = x^3 f(x)$$
, find $g'(-2)$.

7. If $h(x) = f(x^3)$, then is h increasing at an increasing rate or increasing at a decreasing rate at x = 1? Explain.

8. Find the value of $\lim_{h\to 0} \frac{f(1+h)-f(1)}{h}$ or state that it does not exist.

- 9. Find the value of $\lim_{x\to 1} \frac{f(x)-5}{x^2-1}$ or state that it does not exist.
- 10. Find the value of $\lim_{n \to \infty} \sum_{k=1}^{n} f'(-2 + \frac{7k}{n}) \cdot \frac{7}{n}$ or state that it does not exist.

11. Approximate $\int_{-3}^{2} f(x) dx$ using 3 trapezoids with the sub-intervals indicated by the table. Is this approximation less than or greater than the actual value of $\int_{-3}^{2} f(x) dx$. Explain.

- 12. Find the value of $\int_{-2}^{5} f(x)f'(x)dx$.
- 13. Find the value of $\int_0^2 (f''(2x+1)+3)dx$.
- 14. Find the value of $\frac{d}{dx}\int_{-3}^{2x^2} f(t)dt$ at x = 1.

1	5	
_	-	7